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Abstract

Background: We study the problem of mapping proteins between two protein families in the presence of
paralogs. This problem occurs as a difficult subproblem in coevolution-based computational approaches for
protein-protein interaction prediction.

Results: Similar to prior approaches, our method is based on the idea that coevolution implies equal rates of
sequence evolution among the interacting proteins, and we provide a first attempt to quantify this notion in a
formal statistical manner. We call the units that are central to this quantification scheme the units of coevolution. A
unit consists of two mapped protein pairs and its score quantifies the coevolution of the pairs. This quantification
allows us to provide a maximum likelihood formulation of the paralog mapping problem and to cast it into a
binary quadratic programming formulation.

Conclusion: CUPID, our software tool based on a Lagrangian relaxation of this formulation, makes it, for the first
time, possible to compute state-of-the-art quality pairings in a few minutes of runtime. In summary, we suggest a
novel alternative to the earlier available approaches, which is statistically sound and computationally feasible.

Introduction
Protein-protein interactions are essential for understanding
cellular mechanisms and their malfunctioning in disease
[1]. Both experimental and computational methods exist
for their prediction [2]. Among the latter, many are based
on the observation that interacting proteins often have coe-
volved due to a positive selection pressure on preserving
the interaction [3-6]. This observation allows to predict
protein-protein interactions by quantifying the degree of
similarity between the evolution of two protein families.
Coevolution-based methods map proteins across the
families in order to maximize a similarity measure between
the phylogenetic trees or the underlying distance matrices.
In settings with only orthologous proteins (e.g. [7], a study

on coevolution in prokaryotes), the mapping task is trivial
as every protein family contains only one protein per spe-
cies. In the presence of paralogous proteins (paralogs),
however, the mapping task becomes difficult.
There are only a handful of existing approaches for

the paralog mapping problem [8-10]. Izarzugaza et al.
[8], in their method TAG-TSEMA, and most earlier
approaches establish mappings by swapping rows and
columns of the distance matrices to achieve similarity
between the matrices. Tillier et al. [9] take a different
approach in their method MMM by heuristically deter-
mining submatrices of the two distance matrices to be
paired. The recent approach TreeTop by Hajirasouliha
et al. [10] computes mappings by comparing two phylo-
genetic trees derived from the multiple sequence align-
ments using dynamic programming. Compared to the
matrix-based method [8] this yields a speed-up of sev-
eral orders of magnitude, which, however, comes at the
expense of significantly reduced, incomplete mappings.
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Here, we present a new mathematical model and
method, which are based on statistically quantifying the
degree of coevolution reflected by a mapping. Similar to
prior approaches, our method is based on the idea that
coevolution implies equal rates of sequence evolution
among the interacting proteins, and we provide a first
attempt to quantify this notion in a formal statistical man-
ner. We call the units that are central to this quantification
scheme the units of coevolution. A unit consists of two
mapped protein pairs and its score quantifies the coevolu-
tion of the pairs. The quality of a mapping is then rated in
terms of the units of coevolution it consists of. We estab-
lish and exploit a connection to the global network align-
ment problem and are thus able to find provably
near-optimal or optimal mappings. Due to the design of
our quality scores, an optimal mapping corresponds to a
maximum likelihood estimate of a generative statistical
model built upon the participating units of coevolution.
We extend a recent Lagrangian relaxation approach for
network alignment [11] to deal with the new scoring
scheme. We apply our method to an approved benchmark
of coevolving protein domains. In terms of recall and preci-
sion, we outperform MMM, perform better than TreeTop
and slightly better than TAG-TSEMA. In terms of runtime,
we outperform TAG-TSEMA by an order of magnitude,
are faster than MMM and much slower than TreeTop.
Our software tool CUPID (Coevolution Units Paralog

Interaction Detector) as well as all data and scripts to
reproduce the results are freely available as part of the
NINA project for network analysis and integration at
http://www.cwi.nl/research/nina.

Mathematical model
Units of coevolution
The data we take as input are multiple alignments of two
supposedly interacting protein families. In line with

previous work [8-10,12], we assess coevolution in terms
of the differences of sequence identities derived from the
multiple alignments. Here we stick to earlier practice and
define sequence identity as the number of mismatches
divided by the sum of matches and mismatches without
counting gap columns. Given sets of sequences A and B
representing the two supposedly interacting families
whose members are to be paired, let a* and b* be com-
mon ancestral sequences of A and B, respectively. Now,
we look for pairs (a, b) Î A × B such that the sequence
identity between a and a* equals the sequence identity
between b and b*. The caveat here, however, is that a*
and b* are unknown. Hence, we cannot infer the degree
of coevolution of two family members a Î A and b Î B
by considering the pair (a, b) alone. To overcome this,
we consider quadruples, i.e., pairs of pairs (a, b) and
(a’, b’), and assess them based on the following idea: if a
and a’ are significantly more similar to each other than b
is to b’, or vice versa, then at least one of the pairs (a, b),
(a’, b’) is likely to represent non-coevolving proteins.
This is because the differences in sequence identity
among each other imply different rates of divergence
from the virtual, common ancestors a* and b*. Using a*
and b* instead of the two most recent common ancestors
is justified by the common assumption that the trees of
interacting protein families are near identical [8,10]. We
call quadruples ((a, b), (a’, b’)) units of coevolution. The
main theme of this paper is to determine a matching (i.e.,
a mapping) of family members that is optimal with
respect to the quadruples it contains. See Figure 1 for an
illustration and the next subsection for how to assign sta-
tistically motivated values to units of coevolution.

Maximum likelihood maximum cardinality matchings
In the following, we provide a formal definition of units
of coevolution. Based on this, we develop a statistical

Figure 1 Two alignments of protein families A and B with proteins from two species, which are indicated by different background
colors. Black and red nodes and edges compose the matching graph G. A matching θ is shown in red. A unit of coevolution ((a, b), (a’, b’))
within θ is highlighted in bold. For this toy example, we have ℓA(a, a’) = 12 (matches + mismatches), ΔA(a, a’) = 11 (mismatches), ℓB (b, b’) = 19
and ΔB (b, b’) = 15 and a resulting probability f (�A(a, a′),�B(b, b′)) =

(
12
11

)(
19
15

)
/
(
31
26

)
≈ 0.274. Note the lower score of the unit ((a’, b’), (a“, b“)), which is(

12
11

)(
19
3

)/(
31
14

)
≈ 4.4 · 10−5.
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model that can be interpreted as generating units of
coevolution and that is parameterized by matchings.
Determining an optimal matching then translates to
determining the maximum likelihood estimate of the
observed data. To do this, we need the following
notation:
Definition 1 (Matching graph) Let A and B be protein

families whose members v Î A ∪ B are labeled by their
species s(v). The matching graph is a bipartite graph G =
(A ∪ B, E) where E = {(a, b) Î A × B | s(a) = s(b)}.
A matching of G is a subset of edges such that no two

edges are incident to the same node. When S is the set of
all species, the mapping s : A ∪ B ® S used above induces
partitions of A and B. We define At := {a Î A | s(a) = t}
and Bt := {b Î B | s(b) = t} to refer to the respective parts
of species t. Because G consists of |S| connected compo-
nents, which are complete bipartite subgraphs, all maxi-
mal matchings of G have the same cardinality

n =
∑
t∈S

min{|At|, |Bt|}.

Now, we define our search space as follows.
Definition 2 (Search space) The search space Θ is the

set of matchings of maximum cardinality n.
Next, we develop a parametrized statistical model

whose parameters can be identified with the search space
Θ. As pointed out above, a maximum likelihood estimate
θ* Î Θ then corresponds to an optimal matching and
hence an optimal pairing of putatively coevolving family
members. Let ΔA(a, a’) be the number of sequence mis-
matches between a and a’ and let ℓA(a, a’) be the number
of sequence matches and mismatches between a and a’
in the multiple alignment A. See Figure 1 for an example.
We make two simplifying assumptions to derive a sui-

table problem formulation. First, we assume a hidden
substitution rate pa, a’ for each pair of sequences a, a’ Î
A such that the observed quantity of ΔA(a, a’) follows a
binomial distribution with parameter pa, a’. That is, we
model mismatches by independent Bernoulli trials with
probability pa, a’. We make the analogous assumption for
all b, b’ Î B. Therefore, if a interacts with b and a’ with
b’, observing numbers ΔA(a, a’) and ΔB (b, b’) together is
described by a hypergeometric distribution. Formally, the
probability for observing ΔA(a, a’) and ΔB (b, b’) given ℓA

(a, a’), ℓB (b, b’), and ΔA(a, a’) + ΔB (b, b’) is given by

f (�A(a, a′),�B(b, b′)) = PH(�A(a, a′),�B(b, b′)|�A(a, a′), �B(b, b′),�A(a, a′) + �B(b, b′))

=

(
�A(a, a′)
�A(a, a′)

)(
�B(b, b′)
�B(b, b′)

)
(

�A(a, a′) + �B(b, b′)
�A(a, a′) + �B(b, b′)

) , (1)

where H is the assumption of equal evolutionary rates
due to coevolution.
Definition 3 (Unit of coevolution) We refer to (1) as

the value of the unit of coevolution ((a, b), (a’, b’)).

We now assume that all units of coevolution are inde-
pendent. The overall likelihood of a matching θ is thus

f (�A,�B; θ) =
∏

(a, b), (a′, b′) ∈ θ

(a, b) < (a′, b′)

f (�A(a, a′),�B(b, b′)),
(2)

where “<” is an arbitrary ordering on E.
The independence assumption may, at first glance,

appear unjustified because a pair (a, b) can take part in
many units of coevolution. Note, however, first that it is
equivalent to maximize (n−1)/2

√
f (�A,�B; θ) instead of (2)

where n is the size of the matching θ. Rewriting

(n−1)/2
√
f (�A,�B; θ) =

∏
(a,b)∈θ

C(a, b; θ)

where

C(a, b; θ) := n−1

√ ∏
(a′,b′)∈θ ,(a′,b′) �=(a,b)

f (�A(a, a′),�B(b, b′))

which one can – as the (harmonic) mean of all units of
coevolution (a, b) takes part in – interpret as a measure
for the degree of coevolution of the individual pair (a, b).
It is now reasonable to believe that the degrees of coevo-
lution of (a, b) and (a’, b’) are independent of one
another: This clearly applies if the two pairs stem from
two different species (that is, a is orthologous to a’ and b
is orthologous to b’), because there is usually no genetic
crosstalk across species, at least not in eukaryotes. Even
in the case of a being paralogous to a’ and b being para-
logous to b’, the assumption of independence may be rea-
sonable, because paralogs often assume functions that
considerably diverge from their paralogous partners,
hence are subject to independent selective pressures. So,
one can decompose (2) into factors, for which the
assumption of independency makes sense, while each fac-
tor has a reasonable interpretation. This may justify the
assumption of independency overall.
The problem is now as follows.
Problem 1 (Maximum likelihood maximum cardin-

ality matching) Let A and B be two protein families
whose proteins v Î A ∪ B are labeled by their species s
(v), let G be the corresponding bipartite graph and let Θ
be the set of maximum cardinality matchings as given in
Definitions 1 and 2, respectively. Then, the goal is to find
the maximum likelihood matching

θ∗ = argmax
θ∈�

f (�A,�B; θ).

Method
We start by formulating the problem as a binary quad-
ratic program (BQP). For notational convenience, we
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switch from using a, a’ Î A and b, b’ Î B to using i, j Î
A and k, l Î B. As a first step, we take the logarithm of
(2), which yields the log likelihood

log f (�A,�B; θ) =
∑

(i, k), (j, l) ∈ θ

(i, k) < (j, l)

log f (�A(i, j),�B(k, l)).
(3)

We represent a matching θ by binary variables xik
which are equal to 1 if and only if the edge (i, k) is in θ.
As a shorthand we use fijkl = log f (ΔA(i, j), ΔB (k, l)).
Now the corresponding quadratic program is

max
x

∑
i, j
i < j

∑
k, l
k �= l

fijklxikxjl (BQP-1)

s.t.
∑
k

xik ≤ 1 ∀i (4)

∑
i

xik ≤ 1 ∀k (5)

∑
i,k

xik = n (6)

xik = 0 ∀i, k, s(i) �= s(k) (7)

xik ∈ {0, 1} ∀i, k (8)

Constraints (4) and (5) are the standard constraints
for bipartite matching. Equality (6) ensures that the
matching will have maximum cardinality. Constraints
(7) ensure that only proteins of the same species are
mapped. The quadratic objective function scores the
contribution of units of coevolution, which may consist
of protein pairs that belong to different species. We for-
mally show how to transform this integer linear pro-
gramming formulation into a well-studied formulation
used for the Quadratic Assignment Problem [13] and
for network alignment [11,14].
To this end, we eliminate constraint (6) by shifting all

fijkl by an offset K > 0 such that they become strictly
positive. Correcting for this in the objective function
leads to

max
x

∑
i, j
i < j

∑
k, l
k �= l

(fijkl + K)xikxjl −
(
n
2

)
· K s.t. (4), (5), (7) and (8). (BQP-2)

(BQP-1) and (BQP-2) are the same as shown in the
following lemma.

Lemma 1 A solution θ Î Θ is optimal to (BQP-1) if
and only if it is optimal to (BQP-2). Furthermore, the
objective value of θ in (BQP-1) is equal to the objective
value of θ in (BQP-2).
Proof. Let θ1 be an optimal solution to (BQP-1) and θ2

an optimal solution to (BQP-2). Let G = (A ∪ B, E) be
the matching graph as introduced in Def. 1.
We start by showing that |θ1| = |θ2| = n. By con-

straint (6), we have that |θ1| = n. To prove |θ2| = n, we
recall that G consists of connected components
induced by At ∪ Bt for t Î S, each of which is a com-
plete bipartite subgraph. Suppose that θ2 is not maxi-
mal, i.e., |θ2| <n. Observe that every component At ∪
Bt can have at most min{|At|, |Bt|} matched nodes in
θ2. As n =

∑
t∈Smin{|At|, |Bt|} and |θ2| <n, there must

exist a component t with unmatched nodes a Î At and
b Î Bt. Since fijkl + K > 0 for all quadruples ((i, j), (k,
l)) with i <j and k ≠ l, we have that θ2 is not an optimal
solution for (BQP-2) as including (a, b) in the match-
ing would result in a matching with a greater objective
value. Therefore, it follows that |θ1| = |θ2| = n.
The number of quadruples, or units of coevolution,

induced by any maximum cardinality matching is
(
n
2

)
.

Therefore, any maximum cardinality matching that is a
feasible solution to (BQP-1) and (BQP-2) has an objec-
tive value of

∑
i, j
i < j

∑
k, l
k �= l

(fijkl + K)xikxjl −
(
n
2

)
· K =

∑
i, j
i < j

∑
k, l
k �= l

fijklxikxjl.
(9)

As |θ1| = |θ2| = n, the above equality also holds for
matchings θ1 and θ2. In addition, θ1 is by definition fea-
sible to (BQP-2). Conversely, θ2 is feasible to (BQP-1) as
|θ2| = n. Therefore, we have that optimal solutions to
(BQP-1) and (BQP-2) have equal objective values.
QED
Our starting point for the Lagrangian relaxation is

(BQP-2) where the weights assigned to the quadruples
are strictly positive. We obtain the relaxation along the
same lines as in [11]. The main resulting theorem is as
follows.
Theorem 1 Let m =

(∑
t∈s|At| · |Bt|

2

)
.For any λ ∈ R

m, an upper
bound on (BQP-2) is given by

ZLD(λ) = max
x

∑
i,k

vik(λ) · xik (LDλ)

s.t.
∑
k

xik ≤ 1 ∀i (10)

∑
i

xik ≤ 1 ∀k (11)
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xik = 0 ∀i, k, s(i) �= s(k) (12)

xik ∈ {0, 1} ∀i, k (13)

where

vik(λ) = max
y

∑
j

j > i

∑
l

l �= k

(wijkl + λjikl)yijkl +
∑
j

j < i

∑
l

l �= k

(wijkl + λijkl)yijkl (LDik
λ )

s.t.
∑
l

l �= k

yijkl ≤ 1 ∀j, j �= i
(14)

∑
j

j �= 1

yijkl ≤ 1 ∀l, l �= k
(15)

yijkl ∈ {0, 1} ∀j, l (16)

and where wijkl = (fijkl + K)/2. The upper bound ZLD(l)
can be computed in time O(n5).
In the theorem above each variable yijkl refers to a unit

of coevolution. Since (BQP-2) is the formulation used
for global network alignment in [14] and [11], upper
bound and runtime follow directly from the proof given
in [11]. We obtain solutions to (LDl) and (LDik

λ ) by sol-
ving the corresponding maximum weight bipartite
matching problems. From a solution (x, y) to (LDl), we
compute a feasible solution to (BQP-2) by using the
matching encoded in x whose score is a lower bound on
the value of the optimal solution to (BQP-2). The goal
now is to identify l* which results in the smallest gap
between upper and lower bound. We do this using a
hybrid procedure combining subgradient optimization
and a specially crafted dual descent scheme. For details
we refer again to [11].

Results
Benchmark data set
Designing a large benchmark data set for our problem is
difficult as there is insufficient information on the inter-
action between the individual members of protein
families and the correct mapping of paralogs is thus
usually unknown. We therefore rely on the reference
data set of Izarzugaza et al. [8] in which the protein
families are in fact domain families and the type of
interaction is the co-occurrence in the same protein
chain. The task is to determine a correct matching
between protein domains of the same species. In this
benchmark, a correct matching maps only domains that
occur in the same protein chain and are therefore
known to coevolve. Izarzugaza et al. [8] compiled the
data set by first selecting Pfam [15] domains that co-

occur in known yeast proteins and then took from these
domains all eukaryotic sequences present in SwissProt
which are not labeled “fragment”, “hypothetic” or “puta-
tive”. Finally they selected those domain pairs which (i)
per family cover at least four species with at least three
sequences each, (ii) in which at least 15 sequences are
mapped, i.e., co-occur in a protein chain, and (iii) which
have at least 50% of the sequences of the domain with
fewest members mapped. The resulting benchmark
instances comprise 488 pairs of multiple sequence align-
ments of domain families whose domains co-occur in
the same protein chain. The total number of domain
families in the benchmark is 604 and the number of
domains per domain family ranges from 21 up to 212.
In previous work, phylogenetic trees were constructed

from the alignments and either the trees themselves [10]
or the distance matrices derived from them [8,9] were
compared. In contrast, our algorithm uses data from the
multiple alignments directly for scoring, as detailed in
the Mathematical Model section. In addition to the
alignments, the species from which each sequence origi-
nates is provided as input to the algorithms. We ran the
experiments for CUPID and MMM on a 2.26 GHz pro-
cessor with 24 GB of RAM, running 64-bit Linux. For
MMM we vary the allowance parameter a between 0.1
and 0.5. For TAG-TSEMA and TreeTop we took the
numbers from [10]. Note that TAG-TSEMA was run on
one of the fastest supercomputers at the time (2007/8).
TreeTop was run on a similar machine as used for
CUPID.

Recall and precision
For each instance, we compute the recall and precision
of the predicted matching with respect to the reference
solution, which is the largest matching in which only
domains of the same protein are paired, i.e., domains
that are known to coevolve. Recall is defined as the per-
centage of correctly predicted pairings with respect to
the cardinality of the reference solution. Precision is
defined as the number of correctly predicted pairings
divided by the cardinality of the predicted solution.

Solution quality and runtime
Table 1 lists recall and precision for TAG-TSEMA [8],
TreeTop [10], MMM [9], and CUPID. For MMM we
applied a wall-time limit of 1 hour per instance. The
number of instances that MMM could solve within the
time limit rapidly decreases with increasing a. Our
method CUPID achieves a recall of 56 % and a precision
of 50 %, improving on the other methods. Also in com-
parison with MMM, CUPID achieves higher recall and
precision on the subset of instances that were solved by
MMM for varying values of a. Further, CUPID outper-
forms TAG-TSEMA by an order of magnitude in terms
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of runtime. TreeTop is much faster than CUPID (0.02 h
as compared to 30 h) at the expense of a substantially
worse recall (38 % compared to 56 %).
CUPID terminates if either a maximum runtime is

reached or the optimal solution has been found. If the
time limit is hit, it returns a feasible solution and an
upper bound on the optimal score. By definition, the
score of the returned solution is a lower bound on the
optimal score. We define the relative gap as the differ-
ence between upper and lower bound relative to the
absolute value of the lower bound. To determine a good
maximum runtime, we ran CUPID on all instances with
maximum single-CPU-core runtimes of 10 sec, 30 sec, 1
min, 5 min, 10 min, and 20 min. Table 2 summarizes
the effect on solution quality in terms of precision,
recall, median relative gap size, and the number of
instances solved to optimality. These results confirm
that precision and recall increase with maximum run-
time, while the median relative gap size decreases. This
converging behavior suggests that our scoring function
correlates well with precision and recall and that our
algorithm is robust with respect to the choice of the
time limit. Based on Table 2, we decided that stopping
after 5 min represents a good trade-off between runtime
and solution quality. By increasing the runtime from 5

min to 20 min, recall and precision both increase only
by less than one percentage point. On the other hand,
going from 5 min to 1 min, recall and precision both
drop by more than 1.4 percentage points.
When setting the maximum runtime to 5 min, all 488

instances were solved in a total runtime of 30.2 h, out
of which 78 instances were solved to optimality (16.0
%). The median relative gap was 2.1 %, which indicates
that our method is able to identify matchings with a
likelihood close to the maximum likelihood in many
cases. Figure 2 displays a histogram of the observed rela-
tive gap. For most instances it is small, but for a few
instances it constitutes more than 50 % of the likelihood
of the returned solution.

Scoring function assessment
Using the proven near-optimality of most of our solu-
tions, we can assess the scoring function that we intro-
duced in the Mathematical Model section. We relate the
log likelihood of the reference matching to the log likeli-
hood of our computed matching. To this end, we nor-
malize the log likelihood of a matching such that it
corresponds to the average log likelihood of a unit of
coevolution. The results are displayed in Figure 3.
For instances below the bisecting line, our matching

has smaller average log likelihood than the reference
matching. For 64 out of the 488 instances, this applies
with a difference in log likelihood of more than 0.5.
This can have two reasons. First, CUPID might fail to
compute a good matching, which is possible if the gap
is large. Indeed, 27 out of these 64 instances have a rela-
tive gap larger than 20 %, see Figure 3b. The second
reason for a reference log likelihood larger than our
solution’s log likelihood lies in different cardinalities of
the reference matching and our solution. In these
instances, a smaller matching size leads to a larger aver-
age log likelihood. Since CUPID determines maximum
cardinality matchings, it cannot obtain an average log
likelihood as large as the one of the reference matching,
even if it solves an instance to optimality. The perfor-
mance on these instances can only be improved by
allowing for smaller matchings.
Instances for which the average log likelihood of our

solution is larger than the average log likelihood of the
reference matching are located above the bisecting line

Table 1 The average recall and precision values in
percent as well as the runtime in hours of TAG-TSEMA
[8], TreeTop [10], MMM [9] and our method CUPID are
shown.

Recall Precision Runtime #Instances

TAG-TSEMA [8] 56 % 45 % 730 h 488

TreeTop [10] 38 % 48 % 0.02 h 488

CUPID 56 % 50 % 30 h 488

MMM, a = 0.1 [9] 6 % 35 % 55 h 488

MMM, a = 0.2 [9] 15 % [61 %] 46 % [55 %] 121 h 394

MMM, a = 0.3 [9] 26 % [70 %] 57 % [64 %] 250 h 270

MMM, a = 0.4 [9] 35 % [71 %] 53 % [65 %] 323 h 214

MMM, a = 0.5 [9] 37 % [70 %] 44 % [65 %] 363 h 149

CUPID was terminated when either optimality was reached or a time limit of
5 minutes was hit; in the latter case, the best solution found until that time
was used. TAG-TSEMA and TreeTop values are taken from [10]. MMM runs
were subject to a time limit of 1 hour; the number of instances solved within
this time limit are given in the last column. Precision and recall values are
only determined for the set of solved instances. For the same set of solved
instances the CUPID quality measure is given in square brackets.

Table 2 Effect of time limit on solution quality of CUPID.

Time limit 10 sec 30 sec 1 min 5 min 10 min 20 min

Total runtime 1.3 h 3.8 h 7.3 h 30.2 h 51.6 h 81.0 h

Precision 46.8 % 47.8 % 48.2 % 49.6 % 49.8 % 50.3 %

Recall 52.6 % 53.7 % 54.4 % 55.9 % 56.2 % 56.7 %

Median relative gap size 10.4 % 5.4 % 3.1 % 2.1 % 1.7 % 1.3 %

Instances solved to optimality 6.1 % 9.4 % 11.9 % 16.0 % 16.8 % 17.0 %
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in Figure 3. For 127 out of the 488 instances, this
applies with a difference in log likelihood of more than
0.5. These are instances for which the reference match-
ing is not the matching with the highest likelihood
according to the data. This can have two reasons. First,
our maximum likelihood model might need to be
refined. Second, the data, i.e. the multiple alignments,
might be insufficient or not accurate enough to distin-
guish a correct from an incorrect matching. We con-
sider the latter issue to be the more significant one as
obtaining multiple alignments that accurately reflect
evolutionary history is a difficult problem.
Instances close to the bisecting line are favorable

instances for our scoring and algorithm. There the solu-
tion and reference matchings have similar log likelihood.
In total, for 297 of the 488 instances, the difference
between these two log likelihoods is at most 0.5. These
are the instances for which we indeed obtain a large
recall as indicated in Figure 3a by the accumulation of
red points near the bisecting line. In fact, these 297
instances have an average recall of 62.5 % while it is
46.3 % for the remaining instances, which is a significant
difference (p < 10-10 according to a Wilcoxon test).

Conclusions and discussion
In this article, we introduce a novel approach for pre-
dicting a matching of proteins in the presence of para-
logs given multiple sequence alignments of two protein
families. Our line of reasoning is centered around units
of coevolution, which we identify as the minimal units of
evidence for coevolution. Several properties distinguish
our approach CUPID from previous ones. First, we

employ a generative statistical model and score putative
matchings based on their likelihood. Second, we make
use of a close connection to the network alignment pro-
blem to compute provably near-maximum or maximum
likelihood matchings. We observe a median relative
tightness of these bounds as small as 2.1% while limiting
the runtime to at most 5 minutes per instance. Third,
on a commonly-used benchmark data set, CUPID per-
forms better than three state-of-the-art methods in
terms of recall and precision.
Bounds on the optimal score facilitate drawing conclu-

sions on the quality of the scoring function. We can
attribute false predictions to weaknesses of the scoring
function, while for heuristic methods they could also be
caused by a failure to find a good, high-scoring solution.
Our analysis shows that for many instances a match-

ing that does not have maximum cardinality will likely
result in a larger average log likelihood for a unit of coe-
volution. Further, reference matchings usually do not
have maximum cardinality. Recall and especially preci-
sion of the predicted matching can thus be improved by
allowing matchings of smaller cardinality. This could be
addressed, for example, by introducing constraints into
our optimization scheme that influence the matching
size. Subsequently, one could apply model selection
approaches to predict the size of the true matching.
So far, we have restricted ourselves to the quantities

ΔA(a, a’) and ℓA(a, a’) to assess sequence identity, as
done previously. The corresponding scoring model is
very simple and depends greatly on the quality of the
underlying multiple sequence alignment, which is error-
prone. We therefore consider exploring the effect of

Figure 2 Distribution of the relative gap in percent for the 488 instances.
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using different alignment methods and other, more fine-
grained, scoring models as an interesting topic for future
research. For example, we expect that results improve if
alignment features such as secondary structure, amino
acid substitution type or alignment confidence (using
e.g. the head-or-tails [16] or GUIDANCE score [17])
are quantified and considered during the mapping. By
doing so, relatively well-conserved alignment regions
that are likely to participate in an interaction that is

shared family-wide are upweighted. Using our current
model, we could straightforwardly use only selected
alignment columns for scoring a unit of coevolution,
for example those with alignment confidence higher
than a threshold. In order to weigh alignment columns,
the scoring model would need to be revised.
Inspired by a discussion in Tillier et al. [9], another

possible extension is to allow many-to-many instead of
only one-to-one mappings. The scoring based on units

Figure 3 The plots show the quality of the scoring function as measured by the average log likelihood of a unit of coevolution in our
solutions versus the average log likelihood of a unit of coevolution in the reference matchings. Points are colored according to (a) recall
and (b) relative gap size.

El-Kebir et al. BMC Bioinformatics 2013, 14(Suppl 15):S18
http://www.biomedcentral.com/1471-2105/14/S15/S18

Page 8 of 9



of coevolution could immediately be adapted to such a
situation. However, adapting the Lagrangian relaxation
approach is less straightforward and requires more
effort.
As a closing remark, we recall that mapping paralogs

is only a small ingredient to the successful prediction of
protein-protein interaction networks, which remains a
challenging and interesting field of research.
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