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Abstract

Background: Detection of RNA structure similarities is still one of the major computational problems in the
discovery of RNA functions. A case in point is the study of the new appreciated long non-coding RNAs (lncRNAs),
emerging as new players involved in many cellular processes and molecular interactions. Among several
mechanisms of action, some lncRNAs show specific substructures that are likely to be instrumental for their
functioning. For instance, it has been reported in literature that some lncRNAs have a guiding or scaffolding role
by binding chromatin-modifying protein complexes. Thus, a functionally characterized lncRNA (reference) can be
used to infer the function of others that are functionally unknown (target), based on shared structural motifs.

Methods: In our previous work we presented a tool, MONSTER v1.0, able to identify structural motifs shared
between two full-length RNAs. Our procedure is mainly composed of two ad-hoc developed algorithms:
nbRSSP_extractor for characterizing the folding of an RNA sequence by means of a sequence-structure descriptor (i.e.,
an array of non-overlapping substructures located on the RNA sequence and coded by dot-bracket notation); and
SSD_finder, to enable an effective search engine for groups of matches (i.e., chains) common to the reference and
target RNA based on a dynamic programming approach with a new score function. Here, we present an updated
version of the previous one (MONSTER v1.1) accounting for the peculiar feature of lncRNAs that are not expected to
have a unique fold, but appear to fluctuate among a large number of equally-stable folds. In particular, we improved
our SSD_finder algorithm in order to take into account all the alternative equally-stable structures.

Results: We present an application of MONSTER v1.1 on lincRNAs, which are a specific class of lncRNAs located in
genomic regions which do not overlap protein-coding genes. In particular, we provide reliable predictions of the
shared chains between HOTAIR, ANRIL and COLDAIR. The latter are lincRNAs which interact with the same protein
complexes of the Polycomb group and hence they are expected to share structural motifs.
Software availability: the software package is provided as additional file 1 (“archive_updated.zip”).

Background
The last years have been the scene of increasing interest
in long non-coding RNAs (lncRNAs), a large and hetero-
gonous class of RNAs not translated into proteins longer
than 200 nucleotides [1-4]. These novel genes appear
often deregulated in cancer [5,6] and are emerging as
new players of transcriptional and post-transcriptional
regulation [7-9]. However, only a small subset of them

has already been functionally characterized. Among
them, there is a specific sub-group of lncRNAs, called
lincRNAs (large intergenic non-coding RNAs), that reside
in genomic regions which do not overlap protein-coding
genes [10-14]. This positive feature in light of experimen-
tal manipulation favored them in pioneer functional stu-
dies [15]. Indeed, some lincRNAs (e.g., HOTAIR, ANRIL,
and COLDAIR) constitute exemplar lncRNAs whose
function can be related to their structure (see Table 1).
It has been suggested as all of them interact with chro-
matin-remodeling complexes and specifically with the
Polycomb Repressive Complex 2 [16-18]. Therefore, they
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can be expected to share structural motifs. Thus, a func-
tionally characterized lncRNA (here called reference) can
be used to infer the function of other lncRNAs that are
functionally unknown (here called target), based on
shared structural motifs. This implies to assign a struc-
ture to the reference RNA and to look for structural simi-
larities with a target RNA.
Although there are several tools performing the RNA

secondary structure prediction, as well as detecting RNA
structural similarities, they are not immediately suitable
to deal with lincRNAs for two main reasons. First, large
part of them are unable to efficiently treat long nucleo-
tide sequences; second, most of the existing tools
requires multiple sequence alignments, which are gener-
ally not available for lncRNAs.
In fact, an RNA secondary structure can be predicted

using two main approaches: single-sequence [19] and
comparative analysis [20]. The first class of methods per-
forms prediction starting from single sequences using
techniques that includes Free-Energy Minimization (e.g.,
Mfold [21] and RNAfold [22]) and machine learning (e.g.,
ContextFold [23]); while the second one makes predic-
tions for sequence families, exploiting multiple sequence
alignments to predict a consensus structure shared by all
(or most) sequences in the alignment (e.g., RNAalifold
[24], Dynalign [25], Carnac [26]). However, comparative
analysis requires a large multi-alignment of available
homologous sequences, which presently makes it not eli-
gible approach for long and not conserved sequences of
RNAs. Therefore, we focus on single-sequence methods
and among them on the tools using the thermodynamic
models, which result faster and do not require multiple
alignments [27,28]. Thermodynamic methods rely on
evaluation of the stability of a structure either quantifying
free energy values [21], or assigning to each structure a
probability according to the Boltzmann factor [29,30], or
predicting the structure with the highest sum of base par-
ing probability (Maximum Expected Accuracy structure
[31]). Moreover, some of them can perform a global fold-
ing (e.g., Fold of RNAstructure [32] and RNAfold of
Vienna RNA package), while other ones favor a local
folding (i.e., RNALfold [33]). Since we deal with RNA of

long sequences, we prefer the local folding software than
the global ones. Indeed, a local folding that takes into
account short-range pairs is less computational onerous
and mostly more accurate than the global one [34].
For what concerns the search for structural similarities

between two lncRNAs, up-to-date Structator [35] stands
out as a computationally efficient tool to deal with long
sequences. However, it does not adequately reward the
rightness of the structures relative position in both the
reference and the target.
In our previous work [36], we proposed a novel tool

(MONSTER v1.0) that enables to detect structural
motifs shared between two RNAs, taking as input only
the RNA sequences independently from their nucleo-
tides length, long as well as small. Following [35], we
characterized the folding of an RNA sequence by
means of a Secondary Structure Descriptor (SSD), i.e.,
an array of non-overlapping substructures, called Non
Branching Structures (NBSs), and located on the RNA
sequence. MONSTER v1.0 has been composed of two
main core modules: (i) nbRSSP_extractor, to assign a
unique structure to the reference RNA encoded by a
set of NBSs; and (ii) SSD_finder, to detect structural
motifs that the given target RNA has in common with
the reference through an appropriate score function
that takes into account the relative position among
their NBSs.
On the other hand, lncRNAs as RNA molecules are not

expected to have a unique fold, but appear to fluctuate
among a large number of equally-stable folds [37]. Here,
we present an updated version MONSTER v1.1, where we
improved our SSD_finder algorithm in order to take into
account all the alternative equally-stable structures. The
improved version of SSD_finder includes its old version as
a particular case. Hereafter, we call SSD_finder its improved
version.
We thoroughly discuss the complexity of the SSD_fin-

der and we evaluate its robustness in identifying mem-
bers of some RNA families using Rfam 11.0 freely
available dataset. Finally, we apply our pipeline to the
three well functionally characterized abovementioned
lincRNAs (i.e., HOTAIR, ANRIL, and COLDAIR).

Table 1. Summary of our three case-of-study lincRNAs

lincRNA Description Function

HOTAIR HOX intergenic antisense transcript localized in the
nucleus

Epigenetically silences gene expression of many loci, through the recruitment
of chromatin-modifying complexes, such as PRC2, REST and CoREST. Its
expression is increased in tumor cells and may have an active role in the
epigenetic modulation of cancer and in mediation of the cells [11,10,39].

COLDAIR Transcribed in response to biological significant events,
such as a signal of cold environmental temperature

Binding the protein complex PCR2 and performing the role of a guide for the
latter, determines the epigenetic repression of FLC gene (locus floral C) [40,10].

ANRIL Antisense non coding transcript in the INK4 locus Molecular scaffold for chromatin-modifying complexes PCR1 and PCR2, allows
to dynamically modulating transcriptional activity [41,10]. It is implicated in a
range of complex diseases including cancer and coronary heart diseases.
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Methods
The pipeline implemented in MONSTER and sketched
in Figure 1 has been applied to lincRNAs here. It can be
summarized in the following steps:
1. Selection of one lincRNA as reference (e.g.,

HOTAIR/ANRIL/COLDAIR) to compare with the other
selected lincRNAs used as targets.
2. Prediction of the reference secondary structure

(using RNALfold).
3. Extraction of the NBSs of the reference (using

nbRSSP_extractor).
4. Encoding of reference NBSs into suitable SSD

(using nbRSSP_extractor).
5. Searching for matches between the reference NBSs

and target sequences (using Structator).
6. Filtering out matches with low probability to fold

into the corresponding local NBS of the reference (using
our match_filter).
7. Detecting putative set of motifs shared between refer-

ence and target (using SSD_finder). nbRSSP_extractor
makes use of the local folding tool RNALfold [33] from
the Vienna RNA Package to obtain the folding predictions
of the reference. Then, based on an ad-hoc selection,
it extracts and encodes the more stable NBSs in a SSD
(Figure 2).
RNALfold is a Minimum Free Energy-based predictor

that returns the locally stable secondary structures of an
RNA sequence according to a given parameter L that
represents the maximum allowed distance between
base-pairs. Additionally, it computes for each local
structure its free energy as well as the starting position
in the sequence. The output list is composed of all the

possible local structures which are predicted and may
overlap (i.e., more predictions correspond to an identical
piece of sequence). The usage of RNALfold stems from
its specific features: (i) it does not require homologous
sequences that would be not available for lncRNAs, and
(ii) it performs a local folding with lower computational
costs than the other ones. In greater details, starting
from a RNA sequence (Figure 2a), the predicted RNA
secondary structure (Figure 2b) is broken down into
separated NBSs (Figure 2d) that are conveniently repre-
sented by a dot-bracket notation (Figure 2c). Each NBS
has been described by an RNA Sequence-Structure Pat-
tern (RSSP), i.e., a pair composed of a string of bases
(the sub-sequence corresponding to the NBS) and a
string that represents the secondary structure in the
dot-bracket notation (the NBS). In addition, a list of
parameters is associated to each RSSP and composes
the header line. The set of RSSPs makes up the Second-
ary Structure Descriptor (SSD) of the RNA sequence
(Figure 2e).
SSD_finder takes as input each match mi (with 1 ≤ i ≤

n −1, n number of NBSs) between the reference and tar-
get, and returns groups of matches that may correspond
to common structural motifs.
We consider the chains of matches (C), as eligible

chains if they:

1. consist of the largest number of consecutive NBSs;
2. exhibit similar relative distances between NBSs.

In particular, SSD_finder is a dynamic programming
algorithm that computes for each match mi only the

Figure 1 Pipeline steps and flowcharts of the whole procedure applied to lincRNAs. (a) The pipeline steps are explained and the two main
parts of the procedure are highlighted: (1) the prediction and encoding of the lincRNA Secondary Structure Description (SSD) (blue part) and (2)
the effective search engine for groups of matches (i.e., chains) common to the reference and target RNAs (green part). (b) The flowcharts of the
experimental procedure is presented: given as input the reference lincRNA (HOTAIR or ANRIL or COLDAIR) and the target list composed of
HOTAIR, ANRIL, and COLDAIR, the pipeline returns as output the potential structural motifs shared between reference and target. Legend: circles
represent the software tools: the orange ones refer to two online available tools (i.e., RNALfold for prediction and Structator for the matches
searching), the green ones refer to our developed software; rectangles represent software input and output (I/O), colored with water blue and
yellow for what concerns reference and target, respectively; pink rectangles represent the final results after matching reference in the target.

Fiscon et al. BMC Genomics 2015, 16(Suppl 6):S1
http://www.biomedcentral.com/1471-2164/16/S6/S1

Page 3 of 10



highest score of the best chain ending with mi using the
following score function:

sc (C) =
n∑

i=1

P (mi) +
n−1∑

i=1

Q (mi,mi+1)

where:

• P(mi) is the weight of match mi taking into
account its individual relevance (i.e., number of
bases);

Figure 2 An example of the encoding of an RNA secondary structure into a Secondary Structure Descriptor (SSD). (a) RNA secondary
structure representation with the two highlighted Non-Branching Structures (NBSs) (red one and blue one); (b) the extraction of the two NBSs;
(c) mapping of the secondary structure in the dot-bracket notation (i.e., a 3-letter alphabet where dots represent unpaired bases, open-closed
brackets “()” represent the paired bases) and the visualization of the two RSSPs that are a pair of the sub-sequence and the corresponding NBS;
(d) the SSD composed of the two RSSPs.
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• Q(mi, mi+1) is a weight taking into account how
much the pair (mi, mi+1) in the target has positions
consistent with the corresponding NBSs in the
reference.

Therefore, chains with the highest scores are candi-
dates to represent structural motifs shared between
reference and target RNA.
Formally, let’s define:
- R the reference sequence;
- T the target sequence;
- S the list of NBSs extracted from the predict struc-

ture of R, that are sorted based on increasing starting
positions;
- si the i-th NBS in S, pos(si) its position in R and len

(si) its length (1 ≤ i ≤ n − 1, n =|S|);
- M the list of matches that are found in T ordered in

increasing sequence positions;
- mi the i-th match in M, pos(mi) its position in T, len

(mi) its length, and nbs(mi) the NBS in S which mi cor-
responds to;
- ind(·) an operator that starting from 1 returns the

index of the argument (i.e., either a NBS in the list S, or
a match in the list M);
Specifically, matches of a list M are pairs consisting of:
- index i of S of the matching NBS si;
- position pos(mi) of matching subsequence of T (i.e.,

a subsequence that can fold into si based on the base
pairing rules).
Note that M is composed of all potential matches,

including overlapping matches. Moreover, for what con-
cerns the list S of NBSs we have to distinguished two
possible cases:

• case S(1): the list S is composed of only non-over-
lapped NBSs that form a unique prediction of the R
structure. Formally, S contains only si such that the
pos(si)+ len(si) ≤ pos(si+1) condition is satisfied for
any i;
• case S(k): the list S includes even overlapped NBSs
that form k possible alternative predictions of R struc-
ture. Formally, S contains si such that may exist indices
i, j with i<j implying pos(si)+ len(si) > pos(si+1).

Note that case S(1) is the only option implemented in
[36]. Furthermore, we remark that our nbRSSP_extractor
can be switched between the two specific options to
enable extracting either only the non-overlapped NBS
from the RNALfold predictions (in the case S(1)) or all
the even overlapped NBSs (in the case S(k)), according
to the analyzed case study.
Finally, we define a chain C =

{
mj1 ,mj2 , · · · ,mjn

}
of

matches in M as a group of matches satisfying the fol-
lowing conditions ∀i, 1 ≤ i ≤ n − 1 with n=|M|:

(i) ind (nbs(mji )) < ind (nbs(mji+1))
(ii) pos(mji )+length(mji ) ≤ pos (mji+1)
In the following, we will denote the matches in a

chain as m1,..., mn since the condition (ii) implies that C
is sorted according to increasing positions in T, which
implies that ji < ji+1,∀i, 1 ≤ i ≤ n − 1 , and hence there
are no ambiguities on match indices.
More details about the whole procedure are explained

in specific sections of the additional file 2 (Supplemen-
tary_Material), in the additional file 3 (User_Guide),
and additional file 4 (Figure S1).

SSD_finder complexity
SSD_finder algorithm looks for the most meaningful
chains of matches using the dynamic programming and
regarding for all the matches mi ∈ M only the chains end-
ing with mi that have the highest score. Let now consider
f=ind(mi+1) and g=ind(mi) such that the condition (i) and
(ii) are satisfied.
We use a score function Q(f, g) that assigns a score

to the pair of matches (mi, mi+1). The complexity of
our SSD_finder can be evaluated by counting the times
the Q function is called. The dynamic programming
algorithm calls the Q function once for any pair ( f, g)
with g<f. Hence, the cost of the programming algo-
rithm is:

n∑

f=1

f−1∑

g=1

h
(
f , g

)

where h(f, g) is the cost of the call to function Q(f, g).
In the case S(1), h( f, g) is a constant for any f, g, leading

to a total cost equal to
n (n − 1)

2
. Therefore, the compu-

tational complexity of the SSD_finder algorithm when we
have only a unique prediction of R is equal to O(n2).
In the case S(k), h(f, g) accounts for the alternative per-

ditions of the same structure of R. Firstly, we remark
that Q( f, g) weight S how much the pair ( f, g) has posi-
tions consistent with the corresponding NBSs in R.
Therefore, the Q function depends on a distance d( f, g)
between f and g with g<f. We define the distance d( f, g)
as 1 plus the maximum number of non-overlapped
NBSs sk such that g<k<f. Note that according to this
definition, if there are no non-overlapped NBSs between
sf and sg, d( f, g) = 1.
To compute d( f, g), the following algorithm can be

used:

1 Initialize l = f ; D = {};
2 Compute

S =
{
k|g < k < f ∧ pos (sk) ≤ pos (sl) ∧ pos

(
sg

)
+ len

(
sg

) ≤ pos (sk)
}

3 If S �= {} compute
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j = max(S)
D = D ∪ j
l = j ; and repeat step 2,

otherwise,
d(f, g)=1+ |D|; and stop.

Since the algorithm must consider all NBSs between f
and g, its complexity is (f-g), and this is also the cost of
function Q(f, g). Hence, the complexity of dynamic pro-
gramming algorithm is:

n∑

f=1

f−1∑

g=1

f − g =
n∑

f=1

f
(
f − 1

) − f
(
f − 1

)

2
=
1
2

n∑

f=1

(
f 2 − f

)

that results equal to n
(
n2 − 1

)

6
∼= O

(
n3

)
according to

the summation formulae of

n∑

f=1

f 2 =
n (n + 1) (2n + 1)

6

and

n∑

f=1

f =
n (n + 1)

2 . Therefore, the computational

complexity of the SSD_finder algorithm when we have
more alternative predictions of R is equal to O(n3).

Validation procedure
In the following, we define the experiments carried out
to perform the SSD_finder validation.
The validation procedure aims to test the results of our

algorithm to identify members of RNA families obtained
from the Rfam 11.0 database [38]. It can be summarized in
the following steps: (i) we build up a target dataset com-
posed of several Rfam families (i.e., more than 700 sequences
belonging to different families); (ii) we select a whole
sequence belonging to a given Rfam family as reference;
(iii) we run the SSD_ finder obtaining the score of each
sequence; (iv) we sort all the sequences of the target dataset
in a decreasing order according to the returned score.
In greater details, among the reference Rfam families, we

identify the following ones: (i) the Citrus tristeza virus
replication signal family (RFAM Acc.:RF00193) composed
of 44 sequences with an average length of 267 nucleotides
(nt) (longest sequence length = 274 nt, shortest sequence
length = 214 nt); (ii) the small ncRNAs OxyS family
(RFAM Acc.: RF00035) composed of 299 sequences with
an average length of 109 nt (longest sequence length =
114 nt, shortest sequence length = 68 nt); (iii) the
lncRNAs family HAR1A (RFAM Acc.: RF00635) com-
posed of 66 sequences with an average length of 118 nt
(longest sequence length = 135 nt, shortest sequence
length = 96 nt). Furthermore, the target dataset is com-
posed of 723 sequences, including the abovementioned
families and a subset of families randomly extracted from
the Rfam 11.0 (http://rfam.sanger.ac.uk/) and RNAstrand
v2.0 (http://www.rnasoft.ca/strand/) databases, whose

shortest, longest, and average sequence length are equal to
43 nt, 551 nt, and 201 ± 8 nt, respectively.

Results and discussion
Validation
To evaluate the robustness of SSD_finder, we extensively
test its performances in the identification of members of
an RNA family. Specifically, the latter has been obtained
from the online freely available Rfam 11.0 database [38],
which consists of a curated collection of related RNAs.
Note that the Rfam database selects only a short portion
of the sequences which belongs to the Rfam families.
In the following, we explain the results of the experi-

ments that we carried out to perform the SSD_finder
validation.
With reference to our validation procedure explained

in the last subsection of Materials and Methods, in [36]
we focused on the recognition of the consensus struc-
ture of some Rfam families (i.e., RF00193, RF00035,
RF00635) for the selected short portion of these
sequences. We observed that our SSD_finder was able to
detect more than 80% of the members of families with
high specificity. In Figure S2, additional file 5, we report
the trend of the score computed by SSD_finder with
respect to the target sequences to be covered.
Here, we add noise in the input of SSD_finder, consid-

ering the whole original sequence for the member of
the investigated family. In greater details, we test the
SSD_finder performances in the identification of a whole
sequence randomly chosen from those belonging to the
Rfam families. In fact, the Rfam families are composed of
manually-curated fragments of RNA sequences. How-
ever, we aim to identify the whole sequence (reference
RNA) as belonging to the right Rfam family among sev-
eral fragments of sequences (target RNA). In this way, it
should be more difficult to pick the right family to which
the sequence belongs. However, we find that SSD_finder
ranks the reference sequence in the top three of the score
ordered list. Thus, our SSD_finder succeeds in finding the
right family to which the whole sequence belongs even if
the target dataset is only composed of sequence segments
that made the detection harder.
More details about the score ranking and all the valida-

tion procedure are discussed in a specific section of the
additional file 2 (Supplementary_Material) and in the
additional file 6 (Figure S3).
We conclude that our algorithm is highly effective to dis-

criminate the sequence belonging to the reference Rfam
family.

Prediction
We study three lincRNAs, HOTAIR, ANRIL, and COL-
DAIR that constitute exemplar lincRNAs whose func-
tion seems to be related to their structure (Table 1).
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We apply both the SSD_finder flags, above referred as
case S(1) and case S(k), for each combination of the three
lincRNAs. The results are reported in Table 2 and Table 3,
respectively. In greater details, in both Tables the score
values computed by equation (1) and the length of the best
chain of matches between reference and target lincRNA
have been reported for each lincRNA.
In Table 2 we show performance of SSD_finder in

case S(1), where only a unique prediction of the refer-
ence structure has been considered. This corresponds to
the only case implemented in MONSTER v1.0. When
each lincRNA is run against itself, the chain length
found in the target is exactly equal to the number of
RSSPs of the reference. To such a specific match MON-
STER v1.1 assigns the highest score (bold numbers).
We conclude that SSD_finder succeeds to dredge the
whole SSD of the reference lincRNA in the target lincR-
NAs list.
However, when each lincRNA is run against the

others, SSD_finder works quite well. For example,
HOTAIR (reference) versus ANRIL (target) show a
shared chain of length 5 and score 7.24. It means that 5
non-branching structures are common between
HOTAIR and ANRIL, building a common structural
motif. Following the idea that a way of functioning of
lincRNAs relies on their structures, this result could be
a functional signature to infer a putative mechanism of
action shared by HOTAIR and ANRIL.
In Table 3 we report the performances of SSD_finder

on the lincRNA in case S(k), or when it takes into
account all alternative structure predictions of the refer-
ence lincRNA. This can be clearly seen by the number
of reference lincRNA RSSPs that is drastically higher
than that of the corresponding field of Table 2. Indeed,
the SSD of HOTAIR in Table 2 is composed of 67 non-
overlapped RSSPs that constitute a unique prediction of
its structure, while the corresponding SSD in Table 3 is
composed of 241 RSSPs, including the overlapping ones
that represent the alternative predictions. Even here,
SSD_finder succeeds to identify the entire chain of
lincRNA reference, providing different possible config-
urations of such a chain. In fact, since in this case even
alternative NBSs of the reference lincRNA are taken
into account, the chain lengths are always greater than
the corresponding ones in Table 2 whose NBSs did not

overlap. Furthermore, it found some chains of matches
shared between different lincRNA (e.g., HOTAIR versus
ANRIL show a common chain of 21 RSSPs and 38.5
score) that can suggest as abovementioned some puta-
tive common structural motifs.
Interestingly, looking at the list of common RSSPs

between all the pairwise comparisons (e.g., HOTAIR and
ANRIL; HOTAIR and COLDAIR; etc...), we have noticed
the following meaningful characteristics (data not
shown):
(i) 2 RSSPs of the chain shared between HOTAIR and

ANRIL are also common between HOTAIR and COL-
DAIR, (ii) 4 RSSPs of the shared chain between ANRIL
and HOTAIR are also among those ones that compose
the shared chain between ANRIL and COLDAIR, and
finally (iii) 3 RSSPs of the 7 ones that compose the shared
chain between COLDAIR and HOTAIR are even among
those ones of the COLDAIR and ANRIL shared chain.
Therefore, we conclude that some structural motifs are
shared among all the three lincRNAs, pointing to puta-
tive shared function of HOTAIR, ANRIL and COLDAIR.
Note that both Tables are not symmetrical for the

exchange of the reference with target and viceversa and
the results differ depending on which one is chosen as
reference. This is due to the representation of the second-
ary structure to be searched for in the target sequence that
is the result of a structure prediction and hence leads to
some false positive and false negative values. Of course,
the group of RSSPs that can be putative common struc-
tural motifs should be those ones found with a reference.
Finally, in order to give a statistically significance to

our predictions, we computed 1000 shuffled versions of
the three analyzed lincRNAs and we compared the
score of the original comparisons with respect to those
obtained by unrelated sequences. In this way, we are
able to assign p-values to the scores of the original com-
parisons. In particular, we computed the zscore
distribution.

( zscore =
x − μ

σ
with μ = mean, s = standard devia-

tion) of the highest scores of the unrelated sequences.
Then, we located the original scores on this distribution
and we found that they rely on the tails of the distribu-
tion corresponding to a p-value. The supplementary
Figure S4, additional file 7, sketches the computed

Table 2. Results of chain predictions about the HOTAIR, ANRIL and COLDAIR lincRNAs when a unique prediction for
the reference lincRNA is considered (case S(1))

Target HOTAIR ANRIL COLDAIR

Reference (number of RSSPs) Score Chain length Score Chain length Score Chain length

HOTAIR (67 RSSPs) 224.5 67 7.24 5 6.80 5

ANRIL (96 RSSPs) 4.78 4 351.7 96 5.98 4

COLDAIR (25 RSSPs) 3.06 2 5.04 3 95.9 25
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zscore distributions and the zscore corresponding to our
original score. We noticed that our original scores rely
on the tail of the distribution corresponding to a
p-value ≈ 0.

Conclusions
We applied MONSTER v1.1 to search for the potentially
shared structural motifs of three lincRNAs: HOTAIR,
ANRIL, and COLDAIR. We found that SSD_finder has
been resulted highly specific in recognizing the lincRNA
selected as reference in the target list. Moreover, it pre-
dicted putative shared chains of matches between different
lincRNAs that can be used to point to a common way of
functioning. Finally, our method can aid to assign a puta-
tive function to an uncharacterized RNA relied on their
secondary structures.

Software availability
The developed software package is available as supple-
mentary file (zipped file named: “archive_updated.zip”,
additional file 1). Please refer even to the archive.zip
provided as supplementary material of our work [36] to
obtain the previous version of our procedure.

Additional material

Additional file 1: It contains the MONSTER_v1.1 software package
with the updated version of SSD_finder, the file “INSTALL” that guides
the package installation, the “data” and “example_data” folders which
store all the needed files, including example input file and a script to run
the whole procedure.

Additional file 2: It contains details about the MONSTER procedure,
the validation procedure, and the prediction results.

Additional file 3: It contains a detailed guide for MONSTER setting
up and additional advanced information about the package
algorithms and their application.

Additional file 4: Figure S1 - Relevance of the Q term of score
function (1). It contains the supplementary figure that depicts an
example of the Relevance of the Q term of the score function into
chaining. An example of the chaining step (step 7) that shows the
relevance of evaluating the distance among the RSSPs along with the
number of RSSPs to select the best chain of matches.

Additional file 5: Figure S2 - Chain scores evaluated from
SSD_finder. It contains the supplementary figure that depicts the chain
scores evaluated from SSD_finder. Each panel represents the efficiency of
our SSD_finder in the classification of the members of the four analyzed
Rfam families (i.e., (a) RF00193, (b) RF00035, (c) RF00635, and (d) RF1975).
The y axes represent the score of our algorithm, evaluated as in equation
(1) in our manuscript; the × axis represents the number of RNA
sequences that constitute the database used as target in the chaining

validation. This database includes the four selected families and a subset
of families randomly extracted from the Rfam and RNAstrand databases
(more than 700 sequences in total). In each case, the score computed by
SSD_finder drastically decreases approaching to the number of
sequences that corresponds to the number of the family members,
allowing a clear identification of the exact number of detected members.

Additional file 6: Figure S3 - Ranking results of the chain score of
SSD_finder in the validation procedure. It contains the supplementary
figure that depicts the rank results. Each panel represents the efficiency
of our SSD_finder in identifying the right Rfam family in at least the
three positions. (a) Table with the ranking results, whose first column
represents the sequences used as target (1=fragment of sequence
belonging to the right detected Rfam family; 0=other sequences that do
not belong to the detected Rfam family). (b), (c) Bar plots that represent
the graphical representation of the ranking results. The y axes represent
the normalized score of our algorithm, evaluated as in equation (1) in
our manuscript; the × axes represent the number of RNA sequences that
constitute the database used as target in the chaining validation. This
database includes the Rfam family to which the whole sequence used as
reference belongs and a subset of families randomly extracted from the
Rfam database (more than 700 sequences in total). The first group of
plots (b) sketches the first seven ranking results, the second one (c)
represents the whole set of sequences.

Additional file 7: Figure S4 - Distribution of the zscores. It contains
the supplementary figure that depicts the zscore distributions. Each
panel represents the score distribution of zscore using a shuffled version
of the lincRNA joint with the score of our original comparison: (a)
HOTAIR has been chosen as reference and the shuffled versions of ANRIL
as target; (b) HOTAIR has been chosen as reference and the shuffled
versions of COLDAIR as the target; (c) COLDAIR has been chosen as
reference and the shuffled versions of ANRIL as target. It has been
noticed how in all the cases our score is statistically significant with
respect to the random distribution, yielding on the tails of distribution
and corresponding to a p-value ≈0.

List of abbreviations
• lncRNA = long non-coding RNA;
• lincRNA = large intergenic non-coding RNA;
• NBS = Non-Branching Structure;
• RSSP = RNA Sequence Structure Pattern;
• SSD = Secondary Structure Descriptor.
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