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Abstract

Background: The study of RNA has been dramatically improved by the introduction of Next Generation
Sequencing platforms allowing massive and cheap sequencing of selected RNA fractions, also providing
information on strand orientation (RNA-Seq). The complexity of transcriptomes and of their regulative pathways
make RNA-Seq one of most complex field of NGS applications, addressing several aspects of the expression
process (e.g. identification and quantification of expressed genes and transcripts, alternative splicing and
polyadenylation, fusion genes and trans-splicing, post-transcriptional events, etc.).
Moreover, the huge volume of data generated by NGS platforms introduces unprecedented computational and
technological challenges to efficiently analyze and store sequence data and results.

Methods: In order to provide researchers with an effective and friendly resource for analyzing RNA-Seq data, we
present here RAP (RNA-Seq Analysis Pipeline), a cloud computing web application implementing a complete but
modular analysis workflow. This pipeline integrates both state-of-the-art bioinformatics tools for RNA-Seq analysis
and in-house developed scripts to offer to the user a comprehensive strategy for data analysis. RAP is able to
perform quality checks (adopting FastQC and NGS QC Toolkit), identify and quantify expressed genes and
transcripts (with Tophat, Cufflinks and HTSeq), detect alternative splicing events (using SpliceTrap) and chimeric
transcripts (with ChimeraScan). This pipeline is also able to identify splicing junctions and constitutive or alternative
polyadenylation sites (implementing custom analysis modules) and call for statistically significant differences in
genes and transcripts expression, splicing pattern and polyadenylation site usage (using Cuffdiff2 and DESeq).

Results: Through a user friendly web interface, the RAP workflow can be suitably customized by the user and it is
automatically executed on our cloud computing environment. This strategy allows to access to bioinformatics tools
and computational resources without specific bioinformatics and IT skills. RAP provides a set of tabular and
graphical results that can be helpful to browse, filter and export analyzed data, according to the user needs.

Background
RNA-Seq has become one of the most popular techni-
que across the vast landscape of the next and third gen-
eration sequencing technologies [1]. It can be profitably
used to investigate the gene expression process, estimat-
ing both the nature and the quantity of expressed
mRNAs [2] by sequencing a complete transcriptome in

any cell/tissue type and condition. The ability to simul-
taneously detect and quantify the expression profile for
a large number of genes in specific physiological and
pathological conditions has opened new avenues for a
deeper understanding of biological processes and their
regulation (e.g. genome-wide investigation of epigenetic
inheritance) and paved the way for several biotechnolo-
gical and biomedical applications.
Indeed, RNA-Seq can identify and quantify expressed

genes and transcripts providing precious biological infor-
mation on the underlying gene expression mechanisms.
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Notably, gene expression is a highly regulated process and
in some cases final products cannot be fully characterized
by analyzing short reads generated by NGS platforms par-
ticularly when many alternative transcripts of remarkable
length are generated due to complex co-transcriptional
and post-transcriptional nuclear processing, including
alternative initiation and termination of transcription and
alternative splicing [3].
RNA-Seq data can be analyzed by adopting several com-

putational strategies also depending on the requested
results (e.g. expression at gene and/or transcript level,
investigation of alternative splicing events, alternative
polyadenylation sites, etc.). However, despite recent tech-
nological advances, key transcriptome features are yet to
be fully elucidated, and its scale and complexity have not
yet been fully understood [4]. In order to provide easy and
effective access to the gene expression studies to research-
ers with few or limited bioinformatics skills, user-friendly
automated workflows are highly demanded to provide
reliable and easy interpretable results [5] which also keep
up with the exponential growth of sequencing technolo-
gies [6].
To the authors knowledge, several pipeline tools have

been implemented for RNA-seq data analysis [7-13],
some of them proposed along with novel algorithmic
approaches to refine final results [7,8]. However, most
of them are totally lacking an easy accessible web inter-
face for cloud computing [7-9]. Most of them do not
allow to execute a complete pipeline from read mapping
to advanced processing tasks since they only implement
a few specific steps [11-13]. Some tools [13] are imple-
mented as Galaxy [14] customized instances, extending
the platform contribution to the bioinformatics commu-
nity. Unfortunately, they do not feature a powerful
responsive web application to browse, filter and explore
the analysis results, that is, in our experience, the main
interest of final users.
In this paper we present the implementation of a mod-

ular analysis workflow, named RAP (RNA-Seq Analysis
Pipeline), designed to analyze sequencing data in multiple
steps, each one addressing a specific task.
The purpose of RAP is to investigate the complex tran-

scriptional landscape of eukaryotic transcriptomes through
a computationally optimized RNA-Seq data analysis. This
tool is a web application implementing an automatic but
completely customizable analysis workflow able to carry
out a comprehensive transcriptome analysis and provide a
wide range of results, which consist of several tabular and
graphical representations that can be suitably organized,
filtered and browsed according to the user needs.
The workflow is presented as a multi-step pipeline. The

expressed isoforms are reconstructed by adopting spliced
mapping algorithms to align reads to the genome and

assembling them into full-length transcripts. Then,
through isoforms deconvolution methods, transcripts
expression is quantified. Alternative splicing is investi-
gated by mapping reads against an exhaustive splice
junctions library constructed by a comprehensive
combinatorial assortments of known splicing events.
Computational strategies implemented in RAP modules
also allow to identify polyadenylation sites, elementary
alternative splicing events (e.g. exon skipping) and chi-
meric transcripts. Finally, the comparative analysis of
two or more experiment groups corresponding to differ-
ent physiological or pathological conditions allows the
detection of statistically significant changes in expres-
sion levels at gene or transcript isoform level, in the
splicing pattern (e.g. differential exon skipping) and in
used polyadenylation sites.
This broad variety of different analysis branches is

achieved by means of a highly modularized implementa-
tion and a fully generalized computational engine.

Implementation
RAP (RNA-Seq Analysis Pipeline) is a web application
implementing a fully automated analysis workflow,
designed to integrate in-house developed scripts as well as
open source analysis tools into one pipeline (Figure 1).
Using RAP the user can perform a complete RNA-Seq
analysis without any specific technical competence nor
directly managing the complexity of distributed computa-
tional resources. Moreover RAP also offers a web interface
for results management and visualization, allowing the
user to browse and filter the massive amount of data
obtained from typical RNA-Seq experiments.
RAP takes as input short-read datasets produced by

Illumina sequencing platforms and supports several stan-
dard file formats (FASTQ, SRA, BAM and compressed
archives).
The pipeline is designed to analyze the data through a

series of phases, each of them focused on a specific task.
RAP integrates two widespread tools for quality assess-

ment: FastQC [15] and NGS QC Toolkit [16] both provid-
ing quality checks and statistics, useful for a preliminary
evaluation and filtering of raw data. After the quality con-
trol and reads filtering phase, different paths can be simul-
taneously followed, according to the user’s request.
The first path implements TopHat [17]/ Cufflinks [18]/

Cuffdiff2 [19] and/or HTSeq/DESeq [20] for gene/isoform
expression quantification and differential analysis.
The second one detects and quantifies alternative splicing

events, particularly cassette exons and their differential
occurrence through SpliceTrap [21].
The third path detects and quantifies splicing junctions,

including novel ones as well as polyadenylation sites and
their differential occurrence in different samples. The

D’Antonio et al. BMC Genomics 2015, 16(Suppl 6):S3
http://www.biomedcentral.com/1471-2164/16/S6/S3

Page 2 of 11



splice junctions library is built starting from reference
gene annotation models and includes both known and
potential splice junctions (see below for further details).
Residual reads still unmapped to the genome, tran-

scriptome and junctions are analyzed to eventually
detect polyadenylation sites. PolyA tags (reads contain-
ing a stretch of A (An) at the end of the sequence) are
extracted, An-trimmed and re-aligned to the genome.
Following the alignment, a pattern matching procedure
is also applied to possibly detect common polyadenyla-
tion signal sequences (PAS) such as AAUAAA.

Finally, the last path identifies chimeric fusion tran-
scripts through ChimeraScan [22], a tool based on Bow-
tie [23] alignments to detect putative fusion breakpoints.
At present RAP is implemented for several organisms:

Homo sapiens (genomes hg18 and hg19), Mus musculus
(genomes mm9 and mm10), Rattus norvegicus (genome
rn4), Drosophila melanogaster (genome dm3), Saccharo-
myces cerevisiae (genome sacCer3) and Zea mays
(genomes maize2, maize3 and Mo17_v1). Additional
genomes will be considered and implemented in the
future, if required by users.

Figure 1 Schematic description of RAP workflow. Quality check and filtering step for quality assessment (Steps 1 and 2). High quality reads
are aligned to the reference genome using TopHat (Step 3). Alignments are assembled into full-length transcripts and their relative abundances
are estimated by Cufflinks to (Step 4) and raw-counted by HTSeq (Step 5). Unspliced reads are filtered out after an ungapped alignment to the
genome (Step 6). Remaining reads (potentially spliced) are mapped to a custom built junction library (Step 7). Reads still unmapped are scanned
to identify poly(A) tags (Step 8). Cassette exons are identified and quantified by adopting a statistical tool, SpliceTrap (Step 9), and chimeric
transcripts are detected by means of ChimeraScan (Step 10). After the completion of the main analysis, several differential analyses can be
executed. Cuffdiff at transcript level (Step A), based on expression levels calculated by Cufflinks. DESeq at gene level (Step B), based on gene raw
counts calculated by HTSeq. Differential exons (Step C), differential junctions usage (Step D) and differential polyadenylation sites (Step E) can
also be calculated.
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Quality checks
An effective quality check is critical for a reliable data
analysis, since the read quality may affect downstream
results. FastQC [15] (Figure 1, step 1) provides a range
of quality checking modules covering different aspects
of raw read quality, helpful to highlight sequencing
biases and contaminants.
NGS QC Toolkit [16] (Figure 1, step 2) is a suite of tools

for quality check and filtering of NGS data from Illumina
and Roche 454 platforms. This tool allows to filter out low
quality reads and increase the overall dataset quality.
High quality reads are processed to extract several

information at different analysis stages.

Read mapping
Since RAP is specifically designed to work with eukaryotic
genomes and to detect novel splicing events, a spliced
aligner is required to map reads to the genome, across the
introns. TopHat2 [17] (Figure 1, step 3), using Bowtie2
[24], can map reads against both genome and transcrip-
tome (when an annotation is provided). Since full-length
transcripts bring to a significant gain in both sensitivity
and accuracy (e.g. for the right recognition of pseudo-
genes), RAP automatically includes transcript annotations
into the pipeline. Reads are first mapped to known
transcripts and unmapped reads (deriving from unknown
transcripts or containing many miscalled bases) or poorly
aligned reads are then aligned to the genome.

Transcripts reconstruction and quantification
After TopHat2 execution, the resulting alignment files are
provided to Cufflinks [18] (Figure 1, step 4) to generate a
transcriptome assembly and to estimate the expression
level of all detected isoforms. Furthermore a gene expres-
sion raw-count is also calculated with HTSeq [20].
Since RAP does not allow de novo transcript assembly,

Cufflinks is guided by a gene reference annotation file
(the same used during the alignment). The user can
select between two reconstruction algorithms provided
by Cufflinks assembler. A first option is to use reference
transcripts to reconstruct known isoforms and avoid the
assembly of putative novel transcripts (basic assembler).
A second option is to use the supplied reference annota-
tion to guide the assembly and include in the output
both reference transcripts and novel assembled genes
and isoforms (RABT assembler) [25].
Reconstructed transcripts are then analyzed to estimate

their relative abundance, measured in FPKM (expected
Fragments Per Kilobase of transcript per Million fragments
sequenced).
RNA-Seq experiments suffer of known sequencing bias,

that can jeopardize the assumption of uniform coverage. A
bias can be typically introduced by the cDNA amplifica-
tion phase when random hexamers are generally used

[26]. Cufflinks can be used to reduce biases adopting two
strategies. It estimates approximated transcripts abun-
dance to weight reads and profiling the transcripts
sequences, then abundances are re-estimated adjusting the
initial approximation on the bases of detected sequencing
biases (fragment bias correction). Furthermore, reads
mapped to multiple genome positions are at first uni-
formly assigned to each position and then expression
levels are re-estimated by probabilistically dividing reads
on the basis of the first abundance estimation, the inferred
fragment length and the fragment bias (multi reads
correction).
Since most of the tools for differential gene expression

analysis require raw counts, RAP also includes a second
approach to estimate the relative gene expression by using
the HTSeq suite [20] (Figure 1, step 5). Since reads can
overlap, even partially, two or more features (e.g. exons),
RAP implemented the intersection_nonempty mode pro-
vided by HTSeq to guarantee the highest number of
assignments. With this mode if a read is completely
mapped on a feature and partially on another, the read is
assigned to the first feature. Furthermore, this mode is
able to handle partial overlap on a single feature.

Splice junctions detection
High quality reads, obtained from NGS QC Toolkit, are
also analyzed to detect splicing junctions. This phase is
executed in parallel with the previous steps. Although
TopHat2 is already able to detect both known and novel
splicing junctions, the algorithm implemented in this
phase is more focused on this task and can detect a greater
number of splicing events.
To reduce the computational load, unspliced reads,

detected by Bowtie mapping to the reference genome, are
discarded from the initial dataset (Figure 1, step 6).
Because Bowtie2 [23] is an unspliced aligner, only intra-
exonic reads will be mapped in this phase and discarded.
Unmapped reads may potentially present a spliced align-
ment on the genome easily detectable, again using Bowtie,
by mapping to a custom built splice junctions library
(Figure 1, step 7).
The splice junctions library is built starting from a gene

annotation model in GTF format (http://www.ensembl.
org/info/website/upload/gff.html), the same already used
during the alignment and the assembly steps) and includes
two different categories of splice junctions: known and
novel. Known junctions are directly derived from RefSeq
[27] while novel junctions are obtained through a combi-
natorial exon skipping procedure by considering all com-
patible exon skipping patterns. In a transcript with k
exons, k-1 known splice junctions can be observed. By
selectively skipping the inner exons, k-2 novel splice
junctions can be identified. Multiple sequential inner
exons can also be skipped, picking out further junctions.
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This combinatorial approach exhaustively lists all
(k− 2)× (k− 1)

2
novel compatible splice junctions and

it is applied to each annotated transcript. Splice junctions
already included in the known junctions set are not
counted to avoid overestimation of novel junctions.
From each splice junction, the flanking exons

sequences are extracted, considering the 3’ end of the
upstream exon and the 5’ end of the downstream exon,
and spliced together. The library is produced consider-
ing several boundaries lengths (50, 75, 100 and 150bp)
to have an optimal fitting with the user-provided read
lengths. If a flanking exon is shorter than the selected
boundary length, a truncated junction is extracted. Since
the two boundaries are fused together each sequence is
annotated with a length of source exons, to be able to
further determine the fusion point even for truncated
junctions. The human RefSeq junctions library contains
about 200,000 known splice sites on a total of about 2
millions combinatorial junctions included in the library.

Polyadenylation site detection
Reads still unmapped to the genome, transcriptome and
junctions are further analyzed to identify polyadenylation
sites (Figure 1, step 8). PolyA tags (reads containing a
stretch of A at the end of the sequence) are extracted,
trimmed and aligned to the genome. Since the read may
cover a short final exon, the sequence could also contain
a splice junction. Therefore a spliced alignment with
TopHat2 is adopted. Following the alignment, a parsing
procedure is applied to annotate the concurrent occur-
rence of polyadenylation signal (PAS) sequences (i.e.
AAUAAA, AUUAAA or less common variants). PAS are
searched in order of frequency, from the most common
to the rarest. Over the canonical polyadenylation signal
(AAUAAA) a total of 10 variants are considered [28].

Cassette exons identification
Even though cassette exons (i.e. exon skipping events)
can be recognized by the splice junction mapping phase,
RAP also handles a more specialized step focused on
this and other elementary alternative splicing (AS)
events such as intron retention and alternative 5’ or 3’
splice sites. Indeed in higher eukaryotes, exon skipping
is the most common AS event, accounting nearly 40%
of all events [29]. RAP adopts a statistical method for
splicing events identification and quantification imple-
mented by SpliceTrap [21] (Figure 1, step 9).
In order to reliably detect and quantify every potential

exon-skipping event, SpliceTrap builds an exon-trio
database (TXdb) capturing all known transcripts
obtained from RefSeq annotations [27] and breaking
each transcript into all possible exon trios. Each exon

trio thus leads to two sequences: an inclusion isoform
with all three exons and a skipping isoform with the
two flanking exons only.
Reads are then aligned to the TXdb database using

Bowtie and poorly covered exon trios are filtered out
applying a dynamic exon-size-dependent cut-off strat-
egy. Exon inclusion ratios are then estimated adopting a
Bayesian model, given the probability of observing each
fragment on a specific isoform (as function of both
inclusion and exclusion isoform expression level and
normalized by the isoforms lengths) [21].
The exon inclusion ratio is defined as the expression

level of the inclusion isoform divided by the total
expression level of both isoforms (inclusion and exclu-
sion) derived from an exon trio.
SpliceTrap is also able to identify other splicing

events, such as intron retention (IR), alternative donor
(5’ splice site) (AD) and alternative acceptor (3’ splice
site) (AA).

Chimeric transcripts annotation
A further RAP path carries out a specific data analysis
to detect chimeric transcripts (Figure 1, step 10), i.e.
RNAs encoded by a fusion gene or by two different
genes through a trans-splicing event. RAP integrates
ChimeraScan [22], a tool based on Bowtie alignments to
detected putative fusion breakpoints. ChimeraScan
aligns paired-end reads to a combined genome-tran-
scriptome reference to discard uninformative data and
to estimate the insert size distribution of the library.
Unmapped reads are then trimmed into smaller seg-
ments and realigned to the genome, to build a set of
putative chimeric junction sequences. Potential fusion
breakpoints arise from fragments that align to distinct
references or distance genomic locations (according to
the previously estimated insert size distribution) of the
same reference. Putative chimeric junction sequences
are then used as reference to realign candidate junction-
spanning reads.

Differential expression analyses
In the case the user wishes to compare two different
conditions, each eventually represented by more repli-
cates, several differential analyses can be executed by
RAP (Steps A-E in Figure 1). In particular, RAP detects
differentially expressed genes and transcripts by adopt-
ing two approaches: Cuffdiff2 [25] from transcript abun-
dances determined by Cufflinks (Figure 1, step A) and
DESeq [20] from raw counts calculated by HTSeq (Fig-
ure 1, step B).
Cuffdiff2 estimates the expression changes at transcript

level and controls for variability across replicate libraries,
modeling variability in the number of fragments generated
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by each transcript across replicates. Incorrect rejections of
a true null hypothesis (false positives) are controlled with
the Benjamini-Hochberg correction [30] for multiple test-
ing of differential expression (false discovery rate, FDR).
However, this strategy works properly when a large num-
ber of comparisons are performed. In the case of missing
replicates, the variance that can only be calculated
between the conditions, reducing the statistical power.
DESeq instead introduces the assumption that the var-

iance is a sum of a raw variance term (derived from bio-
logical variability) and shot noise term (from counts
uncertainty). This method allows, with strong limita-
tions, to extend the use of DESeq to datasets without or
with very few replicates, pooling together genes with
similar expression levels [20]. However, such a design
should be discouraged in order to improve the accuracy
and to increase the biological robustness of the results.
Other differential analyses are performed to compare

results obtained at other RAP steps, specifically cassette
exons (Figure 1, step C), splicing junctions (Figure 1,
step D) and polyadenylation sites (Figure 1, step E).
Both polyadenylation sites and splicing junctions are
measured as a raw count of reads mapping the specific
position and are therefore suitable to be differentially
analyzed adopting DESeq. On the other hand, cassette
exons are identified by an inclusion ratio and are com-
pared using a chi-square ( c2 ) test.
After the full analysis completion, raw output files are

parsed and stored into a dedicated and optimized MySQL
database.

Results and discussion
Web interface
The RAP pipeline described above can be accessed
through an interactive web-based graphical user inter-
face (GUI). Analysis steps are implemented and distribu-
ted inside our cloud computing environment through a
dispatching application and the whole execution can be
launched and monitored using a common up-to-date
web browser. This makes easy for anyone to perform a
complete and complex RNA-Seq analysis, also without
specific technical, computer or bioinformatics skills.
The web-based GUI is written in PHP: Hypertext Pre-

processor (PHP) language using HyperText Markup
Language (HTML) and JQuery, combined with HTML5
and CSS3 standards, to enable a better user interaction.
A personal user account is required in order to use the

web interface. An account can be requested through the
registration form, providing a valid academic email address
and a password. The first step to submit a dataset to RAP
is the creation of a new study (or project), a collection of
information about a single sequencing project. A study
contains one or more input files and more analyses can be
run on the same input. The creation of a new study only

requires little information, such as a title, a description
and an access level (private, group or public). A private
study can be accessed only by the owner, while a public
study will be accessed by any authenticated user. With a
group access level only users sharing the same institute
will be enabled to access to the project.
Before starting any analysis, the user has to upload

one or more input files. The upload engine offers several
options. The main method is the Web Upload, which
supports up to 12GB file size on 64-bit operating sys-
tems and up to 2GB on 32-bit operating systems. The
user can follow the upload progress and interact with
the system adding or removing files also during the
transfer.
To overcome the Web Upload limitations the user can

choose to upload data providing a web link (HTTP,
HTTPs and FTP protocols are allowed). In this case the
user can enter one or more links and the system will
handle the download using an internal queue. A third
option consists in the use of the Dropbox Chooser
plugin.
The upload facility supports several input formats such as

text-based raw sequences produced by Illumina sequencing
platforms (i.e. FASTQ [31]), pre-aligned data (i.e. BAM and
SAM [32]), compressed reads (i.e. SRA [33]). The user can
also upload these files in a compressed archive to speed up
the uploading process (several common compressed for-
mats are managed, such as zip, tar, gzip, bz2).
At the end of the upload, the input files can be

decompressed, if required, and annotated by adding
metadata information (e.g. organism, tissue, cellular
line). After the annotation phase, uploaded files are
imported into the project and can be used to start new
analyses.

Execution and monitoring analyses
The user can select one or more files and design a new
analysis providing a name, a description and optionally
modifying the analysis parameters. Several parameters
can be customized to tailor the analysis, even if optimal
default parameters to perform a standard workflow are
suggested. Analysis parameters are divided into five
categories: Common parameters, Quality check and
filtering, Genome alignment, Transcript assembly and
abundance estimation, Detection of polyA reads.
The first category contains parameters common to all or

many pipelines modules, such as the reference database
and the Reference-GTF. A set of flags allows to enable or
disable the optional steps (i.e. Junctions Search, Cassette
Exons Detection, Polyadenylation Sites Search and Fusion
Transcripts Identification).
With the Quality check and filtering parameters the

user can modify the behavior of quality control and
trimming module (e.g. the cut-off value for the PHRED
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quality score for high-quality filtering and the primer/
adaptor library).
With Genome alignment parameters the user can per-

sonalize the mapping phase performed by TopHat2. A
set of options can be used to describe the sequencing
library (e.g. strand-specific libraries and paired-end
mean inner distance) and to modify the alignment beha-
vior (e.g. the maximum number of allowed multi-hits,
mismatches and length of gaps).
In the Transcript assembly and abundance estimation

section the user can allow the reconstruction of novel-
transcripts (e.g. enable Novel-Transcripts option to
adopt the RABT assembler to try to reconstruct novel
transcripts supported by alignment data).
Finally, in the Detection of poly(A) reads category, the

user can tune the poly(A) extraction step.
After the analysis customization, the workflow can be

submitted to the queue system. The execution process
is totally automated through a dispatching architecture
integrated with a Torque Resource Manager.
While the pipeline is running, the user can monitor

the status of each step and access to intermediate files
through preview and download operations. The running
status switches from “queued” to “running” to “com-
pleted”. In case of execution fault, the running status is
marked as error. Known issues (e.g. an unmatched num-
ber of reads between the fragments of a pair) are
reported near the error status to give to the user an
explanation of the problem. Other status can be used,
such as skipped (if an optional branch is not executed)
and internal-error (if a step violates resources con-
straints, e.g. the allowed execution time or memory con-
sumption. Further details about the infringement are
described by a popup).
The final results can be browsed directly through the

web interface to query, filter and sort the results.

Results browser
Results are organized into various sections for an easier
accessibility and interpretation. Each section reports a
summary of obtained results and these summaries can
then be expanded to explore more detailed information
(Figure 2).
Results sections are: Quality checks, Data Summary,

Gene Expression, Search by Gene, Junctions, PolyA Sites,
Cassette Exons, Fusion Transcripts and Differential
Expression.
In the Quality Check section RAP organizes results

obtained from both FastQC and NGS QC Toolkit in a
comprehensive summary table. Color-coded labels give
to the user a prompt quality overview and each label
can be explored to display the corresponding output.
This section reports several data metrics useful to track
the analysis process by a quantitative point of view.

The Data Summary reports, for each input file, the
total amount of short reads (both raw and high quality
reads as filtered by NGS QC Toolkit), mapping metrics,
junctions alignment metrics and information from poly
(A) extraction phase. A coverage plot is also reported to
show the average library coverage along transcripts. This
section can also be used to import data (both mapping
files and reconstructed transcripts) into the Integrative
Genome Viewer (IGV [34]).
The Gene Expression section reports expression values

as estimated by Cufflinks. The summary tables displays
colored-boxed numbers of both expressed genes (in
green) and transcripts (in blue). Each label can be
clicked to open the expression overview, a detailed list
of all expressed genes and transcripts in a given sample.
This set of results, along with any other details page in
RAP, can be filtered using customizable thresholds, to
facilitate the identification of functionally significant var-
iants. Every column can be used to filter results and fil-
ters can be combined to produce complex queries. The
output tables, as reported after the application of a set
of filters, can be exported as textual/excel files for offline
downstream analyses.
The Search by Gene section allows to simultaneously

query all experiment results of the analysis project.
Using this form the user can retrieve the expression
values of a given gene or transcript. A dynamical gra-
phic also displays all isoforms, along with the annotated
exons (as coloured boxes) and introns (as connecting
line between exons).
The Junctions section reports results obtained by the

mapping on the splice junctions library. According to the
library construction, a summary table reports, for each
input file, the number of RefSeq and novel junctions.
Poly(A) Sites Section collects results and statistics from

the polyadenylation sites detection step. A chromosomal
distribution of polyA tags and a frequency table of polyade-
nylation signals (PAS) hexamers are also shown.
The Cassette Exons Section provides the identified exons

skipping events and other alternative splicing events
(intron retention, alternative donor, alternative acceptor)
annotated from each input.
Finally, the Fusion Transcript Section shows the iden-

tified fusion breakpoints and their chromosomal
distribution.
A dedicated section allows the user to compute differ-

ential expression operations by setting up multiple com-
binations of comparisons at the user’s choice. The user
can request a specific differential expression operation by
selecting desired inputs. A group must be assigned to
each selected input picking out from a dropdown menu.
In case of biological replicates (i.e. more inputs are avail-
able from the same sample) they can be assigned to the
same group and they will be analyzed together during the
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differential analysis. Although at least two inputs must be
selected, no upper limit is imposed and also the whole
set of inputs can be included in the same differential ana-
lysis. When more than two inputs are selected, all possi-
ble pairs will be considered to call for differential
expression analysis. After the selection of inputs, the user
has to configure the operation parameters and specifically
the type of differential expression operation: at transcript
level (computed with Cuffdiff2), at gene level (computed
with DESeq) or both of them.
An analogous schema is adopted to request for the

determination of significant changes in cassette exons
inclusion ratios, polyadenylation usage and splicing
junctions.

Case studies
RAP has been validated on several public datasets and
results can be publicly accessed to any registered user.
Dillman et al. [35] used RNA-Seq to study the tran-

scriptome of three adult (3-4 months old) female mice
and four embryonic 17 days old (E17) female C57BL/6J
mice. Authors validated 8 DE genes that showed a range

of differential expression as well as different estimated
expression levels in embryonic or adult tissue (Vax1,
Igf2bp1 and Wipf1 as low expressed genes, Draxin, Nrp1
and Caly as moderately expressed genes and Ttr and
Mobp as highly expressed genes). As negative control
they selected two genes that showed low variance and
were not differentially expressed (Ppid and Ubc). They
also examined a group of four genes highly up-regulated
in adult (ATP10a, Grm4, Sparc, Baiap3) and four up-
regulated in embryos (Ncapg2, Tet1, Ccnd2, Ooep).
RAP shows a remarkable agreement with these valida-

tions (dataset name in RAP: “Mouse cerebral cortex adult
VS embryonic”) with the only exceptions of Igf2bp1 and
Mobp, both marked as non significant due to the stringency
of Cuffdiff2 algorithm, although both noticeably differen-
tially expressed.
We also compared the whole set of differential genes

obtained from Dillman et al. (4125 genes) with DE genes
obtained from RAP by applying the same set of filters
reported by authors (4-fold or greater and p < 0.05 after
FDR correction). We obtained 701 DE genes with DESeq
and 611 with cuffdiff with a percentage of agreement of,

Figure 2 RAP Banner and results examples. From top left corner in counterclockwise direction: gene structure view with alternative isoforms
of gene TP53, example of chromosomal distribution of polyadenylation sites, example of results table with detailed information about expressed
transcripts and visualization of the query form for data filtering.
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respectively, 91% (636/701) and 85% (525/611). We
noticed in the Dillman DE dataset a number of genes with
an absolute fold change lower than 4 (in contrast to what
is published in their paper) and we then proceeded to re-
filter their dataset obtaining 1142 genes. Comparing RAP
results with this new dataset we obtained a percentage of
agreement of 81% (572/701) (DESeq) and 73% (452/611)
(Cuffdiff).
Edgren et al. [36] identified 24 novel and 3 previously

known fusion genes in breast cancer cells using paired-
end RNA-seq. They isolated total RNA from four breast
cancer cell lines (BT-474, KPL-4, MCF-7 and SK-BR-3)
and sequenced using the 1G Illumina Genome Analyzer
2X (Illumina). They validated 27 fusion genes: 11 in
BT-474, 10 in SK-BR-3, 3 in KPL-4 and 3 in MCF-7. A
pooled dataset (obtained merging 8 lanes, two from each
cellular line, and producing a single paired-end input) has
been analyzed (dataset name in RAP: “Edgren”) and our
pipeline found 8 fusions from BT-474, 8 from SK-BR-3, 3
from KPL-4 and 2 from MCF-7.
Since the merging process can create artifacts, two BT-

474 lanes have been analyzed separately. In both of them,
10 fusions (on a total of 11) have been observed. Although
RPS6KB1-TMEM49 fusion has not been observed, RAP
reported a fusion breakpoint between RPS6KB1 and SNF8,
a nearby gene known to be a partner of RPS6KB1 [37].
We also applied the RAP workflow to dataset from

Burge et al. [3], Illumina’s Human Body 2.0 [38] and
Pickrell et al. [39] and results are available upon request.

Conclusions
RNA-Seq can be profitably used to understand and quan-
tify the complexity of eukaryotic transcriptomes, in order
to investigate gene expression from different perspectives.
However, the analysis of RNA-Seq data can be challenging
both for the broad analysis scope and the large computa-
tional and storage resources required. The development of
highly automated pipelines for data analysis is therefore
critical, also to speed up research and publication.
A whole RNA-Seq analysis pipeline (RAP) has been

implemented to investigate RNA-Seq data from many
points of view. This pipeline performs a complete analy-
sis to determine and quantify both genes and transcripts
expression, exploit the alternative splicing identifying
expressed splice junctions, poly(A) sites, cassette exons
and other splicing events. Furthermore, it can also be
used to investigate tumor tissues by detecting chimeric
transcripts. Several differential analyses allow to com-
pare data from many samples, determining significant
changes among experimental conditions.
The execution of this pipeline has been fully auto-

mated and integrated with in house computational ser-
vers used via cloud computing.

Taking advantage of the modular structure of RAP we
are considering and implementing several improvements
to RAP analysis workflow, to enhance the identification
and annotation of splicing junctions, novel transcripts and
fusion events. We are also implementing additional down-
stream operations such as Pathway enrichment analysis
for differentially expressed genes, identification of Allele
specific expression through the integration of RAP with
WEP [40] a pipeline we previously devised for whole-
exome analysis, and to provide additional result data plots,
both helpful for a more effective interpretation of results.
To offer to the user a wider range of tools we are con-

sidering the introduction of alternative mapping (e.g.
STAR [41]), detection of differential alternative splicing
analysis (e.g. MATS [42]) and expression levels (e.g. edgeR
[43], NOISeq [44], baySeq [45]). Further improvements
could be obtained by integrating wider annotation data
obtained from ASPicDB [46], a database of reliable anno-
tations of the alternative splicing pattern obtained by
ASPic/PINTRON algorithm [47].

Availability and requirements
RAP is freely available to academic users at http://
bioinformatics.cineca.it/rap/. Each registered user can cre-
ate up to 2 projects, which can contain a maximum of
2 analyses. Each project can contain up to 12 files (single
or paired-end). Every lane should not exceed 15 Gb in
size. Our retention policy is to keep all data stored for
30 days since the analysis has been completed.
For a more extensive use of RAP please contact hpc-

service-bio@cineca.it to arrange a specific agreement with
CINECA.

List of used abbreviations
NGS: Next Generation Sequencing; RNA-Seq: RNA
Sequencing; RAP: RNA-Seq Analysis Pipeline; SRA:
Sequence Read Archive; BAM: Binary Alignment Map;
GTF: Gene Transfer Format; PAS: PolyAdenylation Sig-
nal; AS: Alternative Splicing; TXdb: SpliceTrap exon-
trio database; IR: Intron Retention; AD: Alternative
Donor; AA: Alternative Acceptor; GUI: Graphical User
Interface; PHP: Hypertext Preprocessor; HTML: Hyper-
Text Markup Language; CSS: Cascading Style Sheets;
HTTP: Hypertext Transfer Protocol; HTTPs: HyperText
Transfer Protocol over Secure Socket Layer; FTP: File
Transfer Protocol; IGV: Integrative Genome Viewer; DE:
Differential Expression.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MD, PDDM, MP developed the web interface along with the whole analysis
pipeline. GP, TC supervised the project development. GP, EP acted as

D’Antonio et al. BMC Genomics 2015, 16(Suppl 6):S3
http://www.biomedcentral.com/1471-2164/16/S6/S3

Page 9 of 11

http://bioinformatics.cineca.it/rap/
http://bioinformatics.cineca.it/rap/


scientific supervisors. GP, EP, AMDE, RC contributed to design and to
validate the pipeline. MD, GP, MP, PDDM wrote the manuscript. All authors
read and approved the final manuscript.

Acknowledgements
This work was supported by Ministero dell’Istruzione, Università e Ricerca
(projects PRIN-2009 to EP, PRIN-2012 to GP), Micromap [PON01_02589],
Virtualab [PON01_01297]) and by Consiglio Nazionale delle Ricerche (projects
“Medicina personalizzata”, “Invecchiamento”, “Epigen”, and “Elixir-Ita”).

Declarations
We acknowledge support of the publication fee by Epigen project.
This article has been published as part of BMC Genomics Volume 16
Supplement 6, 2015: Proceedings of the Italian Society of Bioinformatics
(BITS): Annual Meeting 2014: Genomics. The full contents of the supplement
are available online at http://www.biomedcentral.com/bmcgenomics/
supplements/16/S6.

Authors’ details
1CINECA - Consorzio interuniversitario per il calcolo automatico, Bologna,
Italy. 2Translational Oncogenomics Unit, Italian National Cancer Institute
“Regina Elena”, Rome, Italy. 3Dipartimento di Bioscienze, Biotecnologie e
Biofarmaceutica, University of Bari, Bari, Italy. 4Dipartimento di Biotecnologie
e Scienze della Salute, University of Turin, Turin, Italy. 5Istituto di
Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Italy.
6Center of Excellence in Genomics (CEGBA), Bari, Italy.

Published: 1 June 2015

References
1. Szopa-Comley A: DNA Sequencing: towards the third generation and

beyond. Drug Discovery World Spring 2013; 2014.
2. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for

transcriptomics. Nature reviews Genetics 2009, 10(1):57-63.
3. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF,

Schroth GP, Burge CB: Alternative isoform regulation in human tissue
transcriptomes. Nature 2008, 456(7221):470-476.

4. Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA,
Mattick JS, Rinn JL: Targeted RNA sequencing reveals the deep complexity
of the human transcriptome. Nature biotechnology 2012, 30(1):99-104.

5. Koboldt DC, Ding L, Mardis ER, Wilson RK: Challenges of sequencing
human genomes. Briefings in bioinformatics 2010, 11(5):484-498.

6. Schatz MC, Langmead B, Salzberg SL: Cloud computing and the DNA data
race. Nature biotechnology 2010, 28(7):691-693.

7. Gatto A, Torroja-Fungairino C, Mazzarotto F, Cook SA, Barton PJ, Sanchez-
Cabo F, Lara-Pezzi E: FineSplice, enhanced splice junction detection and
quantification: a novel pipeline based on the assessment of diverse RNA-
Seq alignment solutions. Nucleic acids research 2014, 42(8):e71.

8. Rasche A, Lienhard M, Yaspo ML, Lehrach H, Herwig R: ARH-seq:
identification of differential splicing in RNA-seq data. Nucleic acids
research 2014.

9. Kalari KR, Nair AA, Bhavsar JD, O’Brien DR, Davila JI, Bockol MA, Nie J,
Tang X, Baheti S, Doughty JB, et al: MAP-RSeq: Mayo Analysis Pipeline for
RNA sequencing. BMC bioinformatics 2014, 15(1):224.

10. Boria I, Boatti L, Pesole G, Mignone F: NGS-Trex: Next Generation
Sequencing Transcriptome profile explorer. BMC Bioinformatics 2013,
14(Suppl 7):S10.

11. Boria I, Boatti L, Pesole G, Mignone F: Hong D, Rhie A, Park SS, Lee J, Ju YS,
Kim S, Yu SB, Bleazard T, Park HS, Rhee H, et al: FX: an RNA-Seq analysis
tool on the cloud. Bioinformatics 2012, 28(5):721-723.

12. Wang Y, Mehta G, Mayani R, Lu J, Souaiaia T, Chen Y, Clark A, Yoon HJ,
Wan L, Evgrafov OV, et al: RseqFlow: workflows for RNA-Seq data analysis.
Bioinformatics 2011, 27(18):2598-2600.

13. Sreedharan VT, Schultheiss SJ, Jean G, Kahles A, Bohnert R, Drewe P,
Mudrakarta P, Gornitz N, Zeller G, Ratsch G: Oqtans: the RNA-seq
workbench in the cloud for complete and reproducible quantitative
transcriptome analysis. Bioinformatics 2014, 30(9):1300-1301.

14. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M,
Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for
experimentalists. In Current protocols in molecular biology Frederick M
Ausubel [et al] 2010, Chapter 19:11-21, Unit 19 10.

15. FastQC: A quality control tool for high throughput sequence data.
[http://www.bioinformatics.babraham.ac.uk/projects/fastqc/].

16. Patel RK, Jain M: NGS QC Toolkit: a toolkit for quality control of next
generation sequencing data. PloS one 2012, 7(2):e30619.

17. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2:
accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome biology 2013, 14(4):R36.

18. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ,
Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by
RNA-Seq reveals unannotated transcripts and isoform switching during
cell differentiation. Nature biotechnology 2010, 28(5):511-515.

19. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L:
Differential analysis of gene regulation at transcript resolution with RNA-
seq. Nature biotechnology 2013, 31(1):46-53.

20. Anders S, Huber W: Differential expression analysis for sequence count
data. Genome biology 2010, 11(10):R106.

21. Wu J, Akerman M, Sun S, McCombie WR, Krainer AR, Zhang MQ:
SpliceTrap: a method to quantify alternative splicing under single
cellular conditions. Bioinformatics 2011, 27(21):3010-3016.

22. Iyer MK, Chinnaiyan AM, Maher CA: ChimeraScan: a tool for identifying
chimeric transcription in sequencing data. Bioinformatics 2011,
27(20):2903-2904.

23. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome biology 2009, 10(3):R25.

24. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2.
Nature methods 2012, 9(4):357-359.

25. Roberts A, Pimentel H, Trapnell C, Pachter L: Identification of novel
transcripts in annotated genomes using RNA-Seq. Bioinformatics 2011,
27(17):2325-2329.

26. Hansen KD, Brenner SE, Dudoit S: Biases in Illumina transcriptome
sequencing caused by random hexamer priming. Nucleic acids research
2010, 38(12):e131.

27. Pruitt KD, Tatusova T, Maglott DR: NCBI reference sequences (RefSeq): a
curated non-redundant sequence database of genomes, transcripts and
proteins. Nucleic acids research 2007, 35(Database):D61-65.

28. Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D: Patterns of
variant polyadenylation signal usage in human genes. Genome research
2000, 10(7):1001-1010.

29. Keren H, Lev-Maor G, Ast G: Alternative splicing and evolution:
diversification, exon definition and function. Nature reviews Genetics 2010,
11(5):345-355.

30. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate - a
Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc B Met
1995, 57(1):289-300.

31. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM: The Sanger FASTQ file
format for sequences with quality scores, and the Solexa/Illumina FASTQ
variants. Nucleic acids research 2010, 38(6):1767-1771.

32. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
Durbin R, Genome Project Data Processing S: The Sequence Alignment/Map
format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.

33. Kodama Y, Shumway M, Leinonen R, International Nucleotide Sequence
Database C: The Sequence Read Archive: explosive growth of
sequencing data. Nucleic acids research 2012, 40(Database):D54-56.

34. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL:
Integrative annotation of human large intergenic noncoding RNAs
reveals global properties and specific subclasses. Genes & development
2011, 25(18):1915-1927.

35. Dillman AA, Hauser DN, Gibbs JR, Nalls MA, McCoy MK, Rudenko IN, Galter D,
Cookson MR: mRNA expression, splicing and editing in the embryonic and
adult mouse cerebral cortex. Nature neuroscience 2013, 16(4):499-506.

36. Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K,
Rye IH, Nyberg S, Wolf M, Borresen-Dale AL, et al: Identification of fusion
genes in breast cancer by paired-end RNA-sequencing. Genome biology
2011, 12(1):R6.

37. Kangaspeska S, Hultsch S, Edgren H, Nicorici D, Murumagi A, Kallioniemi O:
Reanalysis of RNA-sequencing data reveals several additional fusion
genes with multiple isoforms. PloS one 2012, 7(10):e48745.

38. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D,
Clapham P, Coates G, Fairley S, et al: Ensembl 2013. Nucleic acids research
2013, 41(Database):D48-55.

D’Antonio et al. BMC Genomics 2015, 16(Suppl 6):S3
http://www.biomedcentral.com/1471-2164/16/S6/S3

Page 10 of 11

http://www.biomedcentral.com/bmcgenomics/supplements/16/S6
http://www.biomedcentral.com/bmcgenomics/supplements/16/S6
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


39. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E,
Veyrieras JB, Stephens M, Gilad Y, Pritchard JK: Understanding mechanisms
underlying human gene expression variation with RNA sequencing.
Nature 2010, 464(7289):768-772.

40. D’Antonio M, D’Onorio De Meo P, Paoletti D, Elmi B, Pallocca M, Sanna N,
Picardi E, Pesole G, Castrignano T: WEP: a high-performance analysis
pipeline for whole-exome data. BMC bioinformatics 2013, 14(Suppl 7):S11.

41. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
Chaisson M, Gingeras TR: STAR: ultrafast universal RNA-seq aligner.
Bioinformatics 2013, 29(1):15-21.

42. Shen S, Park JW, Huang J, Dittmar KA, Lu ZX, Zhou Q, Carstens RP, Xing Y:
MATS: a Bayesian framework for flexible detection of differential alternative
splicing from RNA-Seq data. Nucleic acids research 2012, 40(8):e61.

43. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data.
Bioinformatics 2010, 26(1):139-140.

44. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A: Differential
expression in RNA-seq: a matter of depth. Genome research 2011,
21(12):2213-2223.

45. Hardcastle TJ, Kelly KA: baySeq: empirical Bayesian methods for
identifying differential expression in sequence count data. BMC
bioinformatics 2010, 11:422.

46. Martelli PL, D’Antonio M, Bonizzoni P, Castrignano T, D’Erchia AM, D’Onorio
De Meo P, Fariselli P, Finelli M, Licciulli F, Mangiulli M, et al: ASPicDB: a
database of annotated transcript and protein variants generated by
alternative splicing. Nucleic acids research 2011, 39(Database):D80-85.

47. Pirola Y, Rizzi R, Picardi E, Pesole G, Della Vedova G, Bonizzoni P: PIntron:
a fast method for detecting the gene structure due to alternative
splicing via maximal pairings of a pattern and a text. BMC
bioinformatics 2012, 13(Suppl 5):S2.

doi:10.1186/1471-2164-16-S6-S3
Cite this article as: D’Antonio et al.: RAP: RNA-Seq Analysis Pipeline, a
new cloud-based NGS web application. BMC Genomics 2015 16(Suppl 6):
S3.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

D’Antonio et al. BMC Genomics 2015, 16(Suppl 6):S3
http://www.biomedcentral.com/1471-2164/16/S6/S3

Page 11 of 11


	Abstract
	Background
	Methods
	Results

	Background
	Implementation
	Quality checks
	Read mapping
	Transcripts reconstruction and quantification
	Splice junctions detection
	Polyadenylation site detection
	Cassette exons identification
	Chimeric transcripts annotation
	Differential expression analyses

	Results and discussion
	Web interface
	Execution and monitoring analyses
	Results browser
	Case studies

	Conclusions
	Availability and requirements
	List of used abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

